These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 24769565)

  • 1. Transittability of complex networks and its applications to regulatory biomolecular networks.
    Wu FX; Wu L; Wang J; Liu J; Chen L
    Sci Rep; 2014 Apr; 4():4819. PubMed ID: 24769565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimum steering node set of complex networks and its applications to biomolecular networks.
    Wu L; Li M; Wang J; Wu FX
    IET Syst Biol; 2016 Jun; 10(3):116-23. PubMed ID: 27187990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Network output controllability-based method for drug target identification.
    Wu L; Shen Y; Li M; Wu FX
    IEEE Trans Nanobioscience; 2015 Mar; 14(2):184-91. PubMed ID: 25643411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A framework to find the logic backbone of a biological network.
    Maheshwari P; Albert R
    BMC Syst Biol; 2017 Dec; 11(1):122. PubMed ID: 29212542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CytoCtrlAnalyser: a Cytoscape app for biomolecular network controllability analysis.
    Wu L; Li M; Wang J; Wu FX
    Bioinformatics; 2018 Apr; 34(8):1428-1430. PubMed ID: 29186337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of discrete bioregulatory networks using symbolic steady states.
    Siebert H
    Bull Math Biol; 2011 Apr; 73(4):873-98. PubMed ID: 21170598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. State feedback control design for Boolean networks.
    Liu R; Qian C; Liu S; Jin YF
    BMC Syst Biol; 2016 Aug; 10 Suppl 3(Suppl 3):70. PubMed ID: 27586140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The phenotype control kernel of a biomolecular regulatory network.
    Choo SM; Ban B; Joo JI; Cho KH
    BMC Syst Biol; 2018 Apr; 12(1):49. PubMed ID: 29622038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kernel differential subgraph reveals dynamic changes in biomolecular networks.
    Xie J; Lu D; Li J; Wang J; Zhang Y; Li Y; Nie Q
    J Bioinform Comput Biol; 2018 Feb; 16(1):1750027. PubMed ID: 29281952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of complex signaling networks to a representative kernel.
    Kim JR; Kim J; Kwon YK; Lee HY; Heslop-Harrison P; Cho KH
    Sci Signal; 2011 May; 4(175):ra35. PubMed ID: 21632468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel algorithm for finding optimal driver nodes to target control complex networks and its applications for drug targets identification.
    Guo WF; Zhang SW; Shi QQ; Zhang CM; Zeng T; Chen L
    BMC Genomics; 2018 Jan; 19(Suppl 1):924. PubMed ID: 29363426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. WDNfinder: A method for minimum driver node set detection and analysis in directed and weighted biological network.
    Chu Y; Wang Z; Wang R; Zhang N; Li J; Hu Y; Teng M; Wang Y
    J Bioinform Comput Biol; 2017 Oct; 15(5):1750021. PubMed ID: 28918707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implicit methods for qualitative modeling of gene regulatory networks.
    Garg A; Mohanram K; De Micheli G; Xenarios I
    Methods Mol Biol; 2012; 786():397-443. PubMed ID: 21938638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical controllability analysis of directed biological networks using efficient graph reduction.
    Ishitsuka M; Akutsu T; Nacher JC
    Sci Rep; 2017 Oct; 7(1):14361. PubMed ID: 29084972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A SAT-based algorithm for finding attractors in synchronous Boolean networks.
    Dubrova E; Teslenko M
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1393-9. PubMed ID: 21778527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of a kernel for controlling biomolecular regulatory networks.
    Kim J; Park SM; Cho KH
    Sci Rep; 2013; 3():2223. PubMed ID: 23860463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of prior knowledge in constraint-based learning of gene regulatory networks.
    Tan M; Alshalalfa M; Alhajj R; Polat F
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(1):130-42. PubMed ID: 21071802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A parallel attractor-finding algorithm based on Boolean satisfiability for genetic regulatory networks.
    Guo W; Yang G; Wu W; He L; Sun M
    PLoS One; 2014; 9(4):e94258. PubMed ID: 24718686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fast ranking algorithm for predicting gene functions in biomolecular networks.
    Re M; Mesiti M; Valentini G
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(6):1812-8. PubMed ID: 23221088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical model of dynamic protein interactions regulating p53 protein stability for tumor suppression.
    Wang H; Peng G
    Comput Math Methods Med; 2013; 2013():358980. PubMed ID: 24454532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.