These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 24769901)

  • 1. Control of glycolytic flux in directed biosynthesis of uridine-phosphoryl compounds through the manipulation of ATP availability.
    Chen Y; Liu Q; Chen X; Wu J; Xie J; Guo T; Zhu C; Ying H
    Appl Microbiol Biotechnol; 2014 Aug; 98(15):6621-32. PubMed ID: 24769901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The importance of ATP as a regulator of glycolytic flux in Saccharomyces cerevisiae.
    Larsson C; Påhlman IL; Gustafsson L
    Yeast; 2000 Jun; 16(9):797-809. PubMed ID: 10861904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redirecting metabolic flux in Saccharomyces cerevisiae through regulation of cofactors in UMP production.
    Chen Y; Liu Q; Chen X; Wu J; Guo T; Zhu C; Ying H
    J Ind Microbiol Biotechnol; 2015 Apr; 42(4):577-83. PubMed ID: 25566953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems.
    Ebenhöh O; Heinrich R
    Bull Math Biol; 2001 Jan; 63(1):21-55. PubMed ID: 11146883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose and the ATP paradox in yeast.
    Somsen OJ; Hoeben MA; Esgalhado E; Snoep JL; Visser D; van der Heijden RT; Heijnen JJ; Westerhoff HV
    Biochem J; 2000 Dec; 352 Pt 2(Pt 2):593-9. PubMed ID: 11085955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of glutathione production by altering adenosine metabolism of Escherichia coli in a coupled ATP regeneration system with Saccharomyces cerevisiae.
    Liao X; Deng T; Zhu Y; Du G; Chen J
    J Appl Microbiol; 2008 Feb; 104(2):345-52. PubMed ID: 18194260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Manipulation of NADH metabolism in industrial strains].
    Qin Y; Dong Z; Liu L; Chen J
    Sheng Wu Gong Cheng Xue Bao; 2009 Feb; 25(2):161-9. PubMed ID: 19459318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transduction of intracellular and intercellular dynamics in yeast glycolytic oscillations.
    Wolf J; Passarge J; Somsen OJ; Snoep JL; Heinrich R; Westerhoff HV
    Biophys J; 2000 Mar; 78(3):1145-53. PubMed ID: 10692304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustained oscillations in free-energy state and hexose phosphates in yeast.
    Richard P; Teusink B; Hemker MB; Van Dam K; Westerhoff HV
    Yeast; 1996 Jun; 12(8):731-40. PubMed ID: 8813760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deletion or overexpression of mitochondrial NAD+ carriers in Saccharomyces cerevisiae alters cellular NAD and ATP contents and affects mitochondrial metabolism and the rate of glycolysis.
    Agrimi G; Brambilla L; Frascotti G; Pisano I; Porro D; Vai M; Palmieri L
    Appl Environ Microbiol; 2011 Apr; 77(7):2239-46. PubMed ID: 21335394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP in current biotechnology: regulation, applications and perspectives.
    Zhou J; Liu L; Shi Z; Du G; Chen J
    Biotechnol Adv; 2009; 27(1):94-101. PubMed ID: 19026736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the mechanisms of glycolytic oscillations in yeast.
    Madsen MF; Danø S; Sørensen PG
    FEBS J; 2005 Jun; 272(11):2648-60. PubMed ID: 15943800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of glycolytic oscillations by temperature.
    Mair T; Warnke C; Tsuji K; Müller SC
    Biophys J; 2005 Jan; 88(1):639-46. PubMed ID: 15489309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental supply-demand analysis of anaerobic yeast energy metabolism.
    Kroukamp O; Rohwer JM; Hofmeyr JH; Snoep JL
    Mol Biol Rep; 2002; 29(1-2):203-9. PubMed ID: 12241058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatty acid synthesis by isolated leucoplasts from developing Brassica seeds: role of glycolytic intermediates as the source of carbon and energy.
    Gupta R; Singh R
    Indian J Biochem Biophys; 1996 Dec; 33(6):478-83. PubMed ID: 9219433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced S-Adenosylmethionine Production by Increasing ATP Levels in Baker's Yeast ( Saccharomyces cerevisiae).
    Chen Y; Tan T
    J Agric Food Chem; 2018 May; 66(20):5200-5209. PubMed ID: 29722539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurements of intracellular ATP provide new insight into the regulation of glycolysis in the yeast Saccharomyces cerevisiae.
    Ytting CK; Fuglsang AT; Hiltunen JK; Kastaniotis AJ; Özalp VC; Nielsen LJ; Olsen LF
    Integr Biol (Camb); 2012 Jan; 4(1):99-107. PubMed ID: 22134619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction.
    Ida Y; Hirasawa T; Furusawa C; Shimizu H
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):4811-9. PubMed ID: 23435983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulation of the ATP pool as a tool for metabolic engineering.
    Hädicke O; Klamt S
    Biochem Soc Trans; 2015 Dec; 43(6):1140-5. PubMed ID: 26614651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of inositol pyrophosphates on cellular energy dynamics.
    Szijgyarto Z; Garedew A; Azevedo C; Saiardi A
    Science; 2011 Nov; 334(6057):802-5. PubMed ID: 22076377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.