These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 2477007)

  • 1. Homology and analogy in transmembrane channel design: lessons from synaptic membrane proteins.
    Betz H; Becker CM; Grenningloh G; Hoch W; Knaus P; Langosch D; Malosio ML; Schmitt B; Thomas L
    J Protein Chem; 1989 Jun; 8(3):325. PubMed ID: 2477007
    [No Abstract]   [Full Text] [Related]  

  • 2. [3H]glycine binding is modulated by Mg2+ and other ligands of the NMDA receptor-cation channel complex.
    Marvizón JC; Skolnick P
    Eur J Pharmacol; 1988 Jun; 151(1):157-8. PubMed ID: 2458270
    [No Abstract]   [Full Text] [Related]  

  • 3. How to build a glycinergic postsynaptic membrane.
    Betz H; Kuhse J; Schmieden V; Malosio ML; Langosch D; Prior P; Schmitt B; Kirsch J
    J Cell Sci Suppl; 1991; 15():23-5. PubMed ID: 1668595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Mr 93,000 polypeptide of the postsynaptic glycine receptor complex is a peripheral membrane protein.
    Schmitt B; Knaus P; Becker CM; Betz H
    Biochemistry; 1987 Feb; 26(3):805-11. PubMed ID: 3032237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional properties of strychnine-sensitive glycine receptors expressed in Xenopus oocytes injected with a single mRNA.
    Akagi H; Hirai K; Hishinuma F
    Neurosci Res; 1991 Jun; 11(1):28-40. PubMed ID: 1716350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The enigma of transmitter-selective receptor accumulation at developing inhibitory synapses.
    Meier J
    Cell Tissue Res; 2003 Mar; 311(3):271-6. PubMed ID: 12658435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion channel formation by synthetic transmembrane segments of the inhibitory glycine receptor--a model study.
    Langosch D; Hartung K; Grell E; Bamberg E; Betz H
    Biochim Biophys Acta; 1991 Mar; 1063(1):36-44. PubMed ID: 1707671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GABA-modulin: a regulatory protein for GABA receptors.
    Toffano G; Leon A; Massotti M; Guidotti A; Costa E
    Adv Biochem Psychopharmacol; 1980; 21():133-42. PubMed ID: 6246738
    [No Abstract]   [Full Text] [Related]  

  • 9. The nicotinic acetylcholine receptor: subunit structure, functional binding sites, and ion transport properties.
    Raftery MA; Dunn SM; Conti-Tronconi BM; Middlemas DS; Crawford RD
    Cold Spring Harb Symp Quant Biol; 1983; 48 Pt 1():21-33. PubMed ID: 6327155
    [No Abstract]   [Full Text] [Related]  

  • 10. Calcium-dependent acetylcholine release from Xenopus oocytes: simultaneous ionic currents and acetylcholine release recordings.
    Aleu J; Blasi J; Solsona C; Marsal J
    Eur J Neurosci; 2002 Oct; 16(8):1442-8. PubMed ID: 12405957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurochemical anatomy of the zebrafish retina as determined by immunocytochemistry.
    Yazulla S; Studholme KM
    J Neurocytol; 2001 Jul; 30(7):551-92. PubMed ID: 12118162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The chloride channel blocking agent, t-butyl bicyclophosphorothionate, binds to the gamma-aminobutyric acid-benzodiazepine, but not to the glycine receptor in rodents.
    Rienitz A; Becker CM; Betz H; Schmitt B
    Neurosci Lett; 1987 Apr; 76(1):91-5. PubMed ID: 3035434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical modification of spinal cord membranes reveals [3H]strychnine binding sites that are not located on the 48 kDa subunit of the synaptic glycine receptor.
    O'Connor VM; de Alwis MA; Khan JA; Fry JP
    Biochem Soc Trans; 1990 Oct; 18(5):893. PubMed ID: 1964652
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of protein- and membrane-modifying agents on the binding of L-[3H]glutamate to cerebellar synaptic membranes.
    Sharif NA; Roberts PJ
    Brain Res; 1980 Aug; 194(2):594-7. PubMed ID: 6248175
    [No Abstract]   [Full Text] [Related]  

  • 15. Functional correlation of fetal and adult forms of glycine receptors with developmental changes in inhibitory synaptic receptor channels.
    Takahashi T; Momiyama A; Hirai K; Hishinuma F; Akagi H
    Neuron; 1992 Dec; 9(6):1155-61. PubMed ID: 1281418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for a functional coupling of the NMDA and glycine recognition sites in synaptic plasma membranes.
    Compton RP; Hood WF; Monahan JB
    Eur J Pharmacol; 1990 Jan; 188(1):63-70. PubMed ID: 2155123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homology and analogy in transmembrane channel design: lessons from synaptic membrane proteins.
    Betz H
    Biochemistry; 1990 Apr; 29(15):3591-9. PubMed ID: 1692731
    [No Abstract]   [Full Text] [Related]  

  • 18. Collybistin, a newly identified brain-specific GEF, induces submembrane clustering of gephyrin.
    Kins S; Betz H; Kirsch J
    Nat Neurosci; 2000 Jan; 3(1):22-9. PubMed ID: 10607391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiohistochemical demonstration of NMDA/glycine-channel activation in rat hippocampus.
    Hosford DA; Bonhaus DW; McNamara JO
    Eur J Pharmacol; 1988 Jul; 151(3):501-3. PubMed ID: 2463927
    [No Abstract]   [Full Text] [Related]  

  • 20. Unitary anion currents through phospholemman channel molecules.
    Moorman JR; Ackerman SJ; Kowdley GC; Griffin MP; Mounsey JP; Chen Z; Cala SE; O'Brian JJ; Szabo G; Jones LR
    Nature; 1995 Oct; 377(6551):737-40. PubMed ID: 7477264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.