These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 2477054)

  • 21. Enzymatic and non-enzymatic pathways of kynurenines' dimerization: the molecular factors for oxidative stress development.
    Zhuravlev AV; Vetrovoy OV; Savvateeva-Popova EV
    PLoS Comput Biol; 2018 Dec; 14(12):e1006672. PubMed ID: 30532237
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Theoretical study of the oxidation of phenolates by the [Cu2O2(N,N'-di-tert-butylethylenediamine)2]2+ complex.
    Liu YF; Yu JG; Siegbahn PE; Blomberg MR
    Chemistry; 2013 Feb; 19(6):1942-54. PubMed ID: 23292840
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxidation of 3-hydroxyanthranilic acid to the phenoxazinone cinnabarinic acid by peroxyl radicals and by compound I of peroxidases or catalase.
    Christen S; Southwell-Keely PT; Stocker R
    Biochemistry; 1992 Sep; 31(34):8090-7. PubMed ID: 1324727
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New Artificial Biomimetic Enzyme Analogues based on Iron(II/III) Schiff Base Complexes: An Effect of (Benz)imidazole Organic Moieties on Phenoxazinone Synthase and DNA Recognition.
    Bocian A; Szymańska M; Brykczyńska D; Kubicki M; Wałęsa-Chorab M; Roviello GN; Fik-Jaskółka MA; Gorczyński A; Patroniak V
    Molecules; 2019 Aug; 24(17):. PubMed ID: 31480486
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phenoxazinone biosynthesis: accumulation of a precursor, 4-methyl-3-hydroxyanthranilic acid, by mutants of Streptomyces parvulus.
    Troost T; Katz E
    J Gen Microbiol; 1979 Mar; 111(1):121-32. PubMed ID: 458423
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of tyramine and 4-aminophenol on the oscillating peroxidase-oxidase reaction.
    McDonald AG; Tipton KF
    J Phys Chem B; 2014 Jan; 118(1):18-25. PubMed ID: 24351130
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catalytic oxidation of 2-aminophenols and ortho hydroxylation of aromatic amines by tyrosinase.
    Toussaint O; Lerch K
    Biochemistry; 1987 Dec; 26(26):8567-71. PubMed ID: 2964867
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic isotope effects as probes of the mechanism of galactose oxidase.
    Whittaker MM; Ballou DP; Whittaker JW
    Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxidative DNA damage induced by a metabolite of carcinogenic o-anisidine: enhancement of DNA damage and alteration in its sequence specificity by superoxide dismutase.
    Ohkuma Y; Kawanishi S
    Arch Biochem Biophys; 2001 May; 389(1):49-56. PubMed ID: 11370671
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxygenative aromatic ring cleavage of 2-aminophenol with dioxygen catalyzed by a nonheme iron complex: catalytic functional model of 2-aminophenol dioxygenases.
    Chatterjee S; Paine TK
    Inorg Chem; 2015 Feb; 54(4):1720-7. PubMed ID: 25646806
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydroxyurea and p-aminophenol are the suicide inhibitors of ascorbate peroxidase.
    Chen GX; Asada K
    J Biol Chem; 1990 Feb; 265(5):2775-81. PubMed ID: 2154459
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxidation of p-aminophenol catalyzed by horseradish peroxidase and prostaglandin synthase.
    Josephy PD; Eling TE; Mason RP
    Mol Pharmacol; 1983 Mar; 23(2):461-6. PubMed ID: 6300652
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CmlI N-Oxygenase Catalyzes the Final Three Steps in Chloramphenicol Biosynthesis without Dissociation of Intermediates.
    Komor AJ; Rivard BS; Fan R; Guo Y; Que L; Lipscomb JD
    Biochemistry; 2017 Sep; 56(37):4940-4950. PubMed ID: 28823151
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cyclic dipeptide oxidase from Streptomyces noursei. Isolation, purification and partial characterization of a novel, amino acyl alpha,beta-dehydrogenase.
    Gondry M; Lautru S; Fusai G; Meunier G; Ménez A; Genet R
    Eur J Biochem; 2001 Mar; 268(6):1712-21. PubMed ID: 11248691
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prooxidant activity of aminophenol compounds: copper-dependent generation of reactive oxygen species.
    Murakami K; Yoshino M
    Biometals; 2022 Apr; 35(2):329-334. PubMed ID: 35157172
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Elucidation of the order of oxidations and identification of an intermediate in the multistep clavaminate synthase reaction.
    Salowe SP; Krol WJ; Iwata-Reuyl D; Townsend CA
    Biochemistry; 1991 Feb; 30(8):2281-92. PubMed ID: 1998687
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of activation of 1,2-dehydro-N-acetyldopamine for cuticular sclerotization.
    Sugumaran M; Schinkmann K; Dali H
    Arch Insect Biochem Physiol; 1990; 14(2):93-109. PubMed ID: 2134172
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism of o-aminophenol metabolism in human erythrocytes.
    Tomoda A; Yamaguchi J; Kojima H; Amemiya H; Yoneyama Y
    FEBS Lett; 1986 Feb; 196(1):44-8. PubMed ID: 3943630
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Redox-based inactivation of cysteine cathepsins by compounds containing the 4-aminophenol moiety.
    Mirković B; Sosič I; Gobec S; Kos J
    PLoS One; 2011; 6(11):e27197. PubMed ID: 22073285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.