These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 24770734)

  • 1. Unusual ultra-low-frequency fluctuations in freestanding graphene.
    Xu P; Neek-Amal M; Barber SD; Schoelz JK; Ackerman ML; Thibado PM; Sadeghi A; Peeters FM
    Nat Commun; 2014 Apr; 5():3720. PubMed ID: 24770734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal mirror buckling in freestanding graphene locally controlled by scanning tunnelling microscopy.
    Neek-Amal M; Xu P; Schoelz JK; Ackerman ML; Barber SD; Thibado PM; Sadeghi A; Peeters FM
    Nat Commun; 2014 Sep; 5():4962. PubMed ID: 25230052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography.
    Tapasztó L; Dobrik G; Lambin P; Biró LP
    Nat Nanotechnol; 2008 Jul; 3(7):397-401. PubMed ID: 18654562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes.
    Bao W; Miao F; Chen Z; Zhang H; Jang W; Dames C; Lau CN
    Nat Nanotechnol; 2009 Sep; 4(9):562-6. PubMed ID: 19734927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passivation of metal surface states: microscopic origin for uniform monolayer graphene by low temperature chemical vapor deposition.
    Jeon I; Yang H; Lee SH; Heo J; Seo DH; Shin J; Chung UI; Kim ZG; Chung HJ; Seo S
    ACS Nano; 2011 Mar; 5(3):1915-20. PubMed ID: 21309604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defect-like structures of graphene on copper foils for strain relief investigated by high-resolution scanning tunneling microscopy.
    Zhang Y; Gao T; Gao Y; Xie S; Ji Q; Yan K; Peng H; Liu Z
    ACS Nano; 2011 May; 5(5):4014-22. PubMed ID: 21500831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scanning tunneling microscopy and X-ray photoelectron spectroscopy studies of graphene films prepared by sonication-assisted dispersion.
    Polyakova Stolyarova EY; Rim KT; Eom D; Douglass K; Opila RL; Heinz TF; Teplyakov AV; Flynn GW
    ACS Nano; 2011 Aug; 5(8):6102-8. PubMed ID: 21726071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic-scale evidence for potential barriers and strong carrier scattering at graphene grain boundaries: a scanning tunneling microscopy study.
    Koepke JC; Wood JD; Estrada D; Ong ZY; He KT; Pop E; Lyding JW
    ACS Nano; 2013 Jan; 7(1):75-86. PubMed ID: 23237026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bistability and oscillatory motion of natural nanomembranes appearing within monolayer graphene on silicon dioxide.
    Mashoff T; Pratzer M; Geringer V; Echtermeyer TJ; Lemme MC; Liebmann M; Morgenstern M
    Nano Lett; 2010 Feb; 10(2):461-5. PubMed ID: 20058873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single molecule manipulation at low temperature and laser scanning tunnelling photo-induced processes analysis through time-resolved studies.
    Riedel D
    J Phys Condens Matter; 2010 Jul; 22(26):264009. PubMed ID: 21386466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dimensional dependence of phonon transport in freestanding atomic layer systems.
    Kim D; Hwangbo Y; Zhu L; Mag-Isa AE; Kim KS; Kim JH
    Nanoscale; 2013 Dec; 5(23):11870-5. PubMed ID: 24126813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport.
    Andrei EY; Li G; Du X
    Rep Prog Phys; 2012 May; 75(5):056501. PubMed ID: 22790587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scanning tunnelling microscopy: quantum drums beat as one.
    Rodgers P
    Nat Nanotechnol; 2008 Mar; 3(3):130. PubMed ID: 18654479
    [No Abstract]   [Full Text] [Related]  

  • 14. Interaction between hydrogen flux and carbon monolayer on SiC(0001): graphene formation kinetics.
    Deretzis I; La Magna A
    Nanoscale; 2013 Jan; 5(2):671-80. PubMed ID: 23223677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC.
    Yue Y; Zhang J; Wang X
    Small; 2011 Dec; 7(23):3324-33. PubMed ID: 21997970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Room-temperature molecular-resolution characterization of self-assembled organic monolayers on epitaxial graphene.
    Wang QH; Hersam MC
    Nat Chem; 2009 Jun; 1(3):206-11. PubMed ID: 21378849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-organized monolayer formation from binary mixtures of substituted alkyl chains studied by STM.
    Son SB; Lee H; Jeon IC; Park SK; Hahn JR
    J Nanosci Nanotechnol; 2006 Aug; 6(8):2494-8. PubMed ID: 17037862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bottom-up growth of epitaxial graphene on 6H-SiC(0001).
    Huang H; Chen W; Chen S; Wee AT
    ACS Nano; 2008 Dec; 2(12):2513-8. PubMed ID: 19206286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemically homogeneous and thermally reversible oxidation of epitaxial graphene.
    Hossain MZ; Johns JE; Bevan KH; Karmel HJ; Liang YT; Yoshimoto S; Mukai K; Koitaya T; Yoshinobu J; Kawai M; Lear AM; Kesmodel LL; Tait SL; Hersam MC
    Nat Chem; 2012 Feb; 4(4):305-9. PubMed ID: 22437716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-resolved scanning tunnelling microscopy for molecular science.
    Sloan PA
    J Phys Condens Matter; 2010 Jul; 22(26):264001. PubMed ID: 21386458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.