These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 24771021)

  • 1. Natural variation and genetic analysis of the tiller angle gene MsTAC1 in Miscanthus sinensis.
    Zhao H; Huai Z; Xiao Y; Wang X; Yu J; Ding G; Peng J
    Planta; 2014 Jul; 240(1):161-75. PubMed ID: 24771021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic diversity and population structure of Miscanthus sinensis germplasm in China.
    Zhao H; Wang B; He J; Yang J; Pan L; Sun D; Peng J
    PLoS One; 2013; 8(10):e75672. PubMed ID: 24116066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Tiller Angle Gene, TAC3, together with TAC1 and D2 Largely Determine the Natural Variation of Tiller Angle in Rice Cultivars.
    Dong H; Zhao H; Xie W; Han Z; Li G; Yao W; Bai X; Hu Y; Guo Z; Lu K; Yang L; Xing Y
    PLoS Genet; 2016 Nov; 12(11):e1006412. PubMed ID: 27814357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Marker-Trait Association for Biomass Yield of Potential Bio-fuel Feedstock Miscanthus sinensis from Southwest China.
    Nie G; Huang L; Zhang X; Taylor M; Jiang Y; Yu X; Liu X; Wang X; Zhang Y
    Front Plant Sci; 2016; 7():802. PubMed ID: 27375656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TAC1, a major quantitative trait locus controlling tiller angle in rice.
    Yu B; Lin Z; Li H; Li X; Li J; Wang Y; Zhang X; Zhu Z; Zhai W; Wang X; Xie D; Sun C
    Plant J; 2007 Dec; 52(5):891-8. PubMed ID: 17908158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A footprint of past climate change on the diversity and population structure of Miscanthus sinensis.
    Clark LV; Brummer JE; Głowacka K; Hall MC; Heo K; Peng J; Yamada T; Yoo JH; Yu CY; Zhao H; Long SP; Sacks EJ
    Ann Bot; 2014 Jul; 114(1):97-107. PubMed ID: 24918203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contrasting allelic distribution of CO/Hd1 homologues in Miscanthus sinensis from the East Asian mainland and the Japanese archipelago.
    Nagano H; Clark LV; Zhao H; Peng J; Yoo JH; Heo K; Yu CY; Anzoua KG; Matsuo T; Sacks EJ; Yamada T
    J Exp Bot; 2015 Jul; 66(14):4227-37. PubMed ID: 26089536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular evolution of the TAC1 gene from rice (Oryza sativa L.).
    Jiang J; Tan L; Zhu Z; Fu Y; Liu F; Cai H; Sun C
    J Genet Genomics; 2012 Oct; 39(10):551-60. PubMed ID: 23089365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A framework genetic map for Miscanthus sinensis from RNAseq-based markers shows recent tetraploidy.
    Swaminathan K; Chae WB; Mitros T; Varala K; Xie L; Barling A; Glowacka K; Hall M; Jezowski S; Ming R; Hudson M; Juvik JA; Rokhsar DS; Moose SP
    BMC Genomics; 2012 Apr; 13():142. PubMed ID: 22524439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecological characteristics and in situ genetic associations for yield-component traits of wild Miscanthus from eastern Russia.
    Clark LV; Dzyubenko E; Dzyubenko N; Bagmet L; Sabitov A; Chebukin P; Johnson DA; Kjeldsen JB; Petersen KK; Jørgensen U; Yoo JH; Heo K; Yu CY; Zhao H; Jin X; Peng J; Yamada T; Sacks EJ
    Ann Bot; 2016 Oct; 118(5):941-955. PubMed ID: 27451985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide association studies and prediction of 17 traits related to phenology, biomass and cell wall composition in the energy grass Miscanthus sinensis.
    Slavov GT; Nipper R; Robson P; Farrar K; Allison GG; Bosch M; Clifton-Brown JC; Donnison IS; Jensen E
    New Phytol; 2014 Mar; 201(4):1227-1239. PubMed ID: 24308815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerating the domestication of a bioenergy crop: identifying and modelling morphological targets for sustainable yield increase in Miscanthus.
    Robson P; Jensen E; Hawkins S; White SR; Kenobi K; Clifton-Brown J; Donnison I; Farrar K
    J Exp Bot; 2013 Nov; 64(14):4143-55. PubMed ID: 24064927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic variation and association mapping for 12 agronomic traits in indica rice.
    Lu Q; Zhang M; Niu X; Wang S; Xu Q; Feng Y; Wang C; Deng H; Yuan X; Yu H; Wang Y; Wei X
    BMC Genomics; 2015 Dec; 16():1067. PubMed ID: 26673149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transferability of microsatellite markers from Brachypodium distachyon to Miscanthus sinensis, a potential biomass crop.
    Zhao H; Yu J; You FM; Luo M; Peng J
    J Integr Plant Biol; 2011 Mar; 53(3):232-45. PubMed ID: 21205191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus.
    da Costa RM; Lee SJ; Allison GG; Hazen SP; Winters A; Bosch M
    Ann Bot; 2014 Oct; 114(6):1265-77. PubMed ID: 24737720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomics and proteomics reveal genetic and biological basis of superior biomass crop Miscanthus.
    Sheng J; Zheng X; Wang J; Zeng X; Zhou F; Jin S; Hu Z; Diao Y
    Sci Rep; 2017 Oct; 7(1):13777. PubMed ID: 29062090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the
    Guo Z; Xu M; Nagano H; Clark LV; Sacks EJ; Yamada T
    Genes (Basel); 2021 Feb; 12(2):. PubMed ID: 33669585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DArT-based characterisation of genetic diversity in a Miscanthus collection from Poland.
    Tang J; Daroch M; Kilian A; Jeżowski S; Pogrzeba M; Mos M
    Planta; 2015 Oct; 242(4):985-96. PubMed ID: 26040407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic complexity of miscanthus cell wall composition and biomass quality for biofuels.
    van der Weijde T; Kamei CLA; Severing EI; Torres AF; Gomez LD; Dolstra O; Maliepaard CA; McQueen-Mason SJ; Visser RGF; Trindade LM
    BMC Genomics; 2017 May; 18(1):406. PubMed ID: 28545405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of chilling-shock responses in four genotypes of Miscanthus reveals the superior tolerance of M. x giganteus compared with M. sinensis and M. sacchariflorus.
    Purdy SJ; Maddison AL; Jones LE; Webster RJ; Andralojc J; Donnison I; Clifton-Brown J
    Ann Bot; 2013 May; 111(5):999-1013. PubMed ID: 23519835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.