These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 24771036)
1. Assembly of nonheme Mn/Fe active sites in heterodinuclear metalloproteins. Griese JJ; Srinivas V; Högbom M J Biol Inorg Chem; 2014 Aug; 19(6):759-74. PubMed ID: 24771036 [TBL] [Abstract][Full Text] [Related]
2. Direct observation of structurally encoded metal discrimination and ether bond formation in a heterodinuclear metalloprotein. Griese JJ; Roos K; Cox N; Shafaat HS; Branca RM; Lehtiö J; Gräslund A; Lubitz W; Siegbahn PE; Högbom M Proc Natl Acad Sci U S A; 2013 Oct; 110(43):17189-94. PubMed ID: 24101498 [TBL] [Abstract][Full Text] [Related]
3. Metal use in ribonucleotide reductase R2, di-iron, di-manganese and heterodinuclear--an intricate bioinorganic workaround to use different metals for the same reaction. Högbom M Metallomics; 2011 Feb; 3(2):110-20. PubMed ID: 21267492 [TBL] [Abstract][Full Text] [Related]
4. Chemical flexibility of heterobimetallic Mn/Fe cofactors: R2lox and R2c proteins. Kutin Y; Kositzki R; Branca RMM; Srinivas V; Lundin D; Haumann M; Högbom M; Cox N; Griese JJ J Biol Chem; 2019 Nov; 294(48):18372-18386. PubMed ID: 31591267 [TBL] [Abstract][Full Text] [Related]
5. Divergent assembly mechanisms of the manganese/iron cofactors in R2lox and R2c proteins. Kutin Y; Srinivas V; Fritz M; Kositzki R; Shafaat HS; Birrell J; Bill E; Haumann M; Lubitz W; Högbom M; Griese JJ; Cox N J Inorg Biochem; 2016 Sep; 162():164-177. PubMed ID: 27138102 [TBL] [Abstract][Full Text] [Related]
6. Assembly of a heterodinuclear Mn/Fe cofactor is coupled to tyrosine-valine ether cross-link formation in the R2-like ligand-binding oxidase. Griese JJ; Kositzki R; Haumann M; Högbom M J Biol Inorg Chem; 2019 Mar; 24(2):211-221. PubMed ID: 30689052 [TBL] [Abstract][Full Text] [Related]
7. Structural Basis for Oxygen Activation at a Heterodinuclear Manganese/Iron Cofactor. Griese JJ; Kositzki R; Schrapers P; Branca RM; Nordström A; Lehtiö J; Haumann M; Högbom M J Biol Chem; 2015 Oct; 290(42):25254-72. PubMed ID: 26324712 [TBL] [Abstract][Full Text] [Related]
8. Metallation and mismetallation of iron and manganese proteins in vitro and in vivo: the class I ribonucleotide reductases as a case study. Cotruvo JA; Stubbe J Metallomics; 2012 Oct; 4(10):1020-36. PubMed ID: 22991063 [TBL] [Abstract][Full Text] [Related]
9. The Bacillus anthracis class Ib ribonucleotide reductase subunit NrdF intrinsically selects manganese over iron. Grāve K; Griese JJ; Berggren G; Bennett MD; Högbom M J Biol Inorg Chem; 2020 Jun; 25(4):571-582. PubMed ID: 32296998 [TBL] [Abstract][Full Text] [Related]
10. Key Structural Motifs Balance Metal Binding and Oxidative Reactivity in a Heterobimetallic Mn/Fe Protein. Kisgeropoulos EC; Griese JJ; Smith ZR; Branca RMM; Schneider CR; Högbom M; Shafaat HS J Am Chem Soc; 2020 Mar; 142(11):5338-5354. PubMed ID: 32062969 [TBL] [Abstract][Full Text] [Related]
11. A Mycobacterium tuberculosis ligand-binding Mn/Fe protein reveals a new cofactor in a remodeled R2-protein scaffold. Andersson CS; Högbom M Proc Natl Acad Sci U S A; 2009 Apr; 106(14):5633-8. PubMed ID: 19321420 [TBL] [Abstract][Full Text] [Related]
12. The manganese ion of the heterodinuclear Mn/Fe cofactor in Chlamydia trachomatis ribonucleotide reductase R2c is located at metal position 1. Andersson CS; Öhrström M; Popović-Bijelić A; Gräslund A; Stenmark P; Högbom M J Am Chem Soc; 2012 Jan; 134(1):123-5. PubMed ID: 22133609 [TBL] [Abstract][Full Text] [Related]
14. Spectroscopic and metal-binding properties of DF3: an artificial protein able to accommodate different metal ions. Torres Martin de Rosales R; Faiella M; Farquhar E; Que L; Andreozzi C; Pavone V; Maglio O; Nastri F; Lombardi A J Biol Inorg Chem; 2010 Jun; 15(5):717-28. PubMed ID: 20225070 [TBL] [Abstract][Full Text] [Related]
15. Evidence that the β subunit of Chlamydia trachomatis ribonucleotide reductase is active with the manganese ion of its manganese(IV)/iron(III) cofactor in site 1. Dassama LM; Boal AK; Krebs C; Rosenzweig AC; Bollinger JM J Am Chem Soc; 2012 Feb; 134(5):2520-3. PubMed ID: 22242660 [TBL] [Abstract][Full Text] [Related]
16. Mechanistic implications for the formation of the diiron cluster in ribonucleotide reductase provided by quantitative EPR spectroscopy. Pierce BS; Elgren TE; Hendrich MP J Am Chem Soc; 2003 Jul; 125(29):8748-59. PubMed ID: 12862469 [TBL] [Abstract][Full Text] [Related]
17. Design of dinuclear manganese cofactors for bacterial reaction centers. Olson TL; Espiritu E; Edwardraja S; Simmons CR; Williams JC; Ghirlanda G; Allen JP Biochim Biophys Acta; 2016 May; 1857(5):539-547. PubMed ID: 26392146 [TBL] [Abstract][Full Text] [Related]
18. Pulsed Multifrequency Electron Paramagnetic Resonance Spectroscopy Reveals Key Branch Points for One- vs Two-Electron Reactivity in Mn/Fe Proteins. Kisgeropoulos EC; Gan YJ; Greer SM; Hazel JM; Shafaat HS J Am Chem Soc; 2022 Jul; 144(27):11991-12006. PubMed ID: 35786920 [TBL] [Abstract][Full Text] [Related]
19. Evidence for a Di-μ-oxo Diamond Core in the Mn(IV)/Fe(IV) Activation Intermediate of Ribonucleotide Reductase from Chlamydia trachomatis. Martinie RJ; Blaesi EJ; Krebs C; Bollinger JM; Silakov A; Pollock CJ J Am Chem Soc; 2017 Feb; 139(5):1950-1957. PubMed ID: 28075562 [TBL] [Abstract][Full Text] [Related]
20. A manganese(IV)/iron(IV) intermediate in assembly of the manganese(IV)/iron(III) cofactor of Chlamydia trachomatis ribonucleotide reductase. Jiang W; Hoffart LM; Krebs C; Bollinger JM Biochemistry; 2007 Jul; 46(30):8709-16. PubMed ID: 17616152 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]