These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 24771134)
1. Addition of citrate to Acidithiobacillus ferrooxidans cultures enables precipitate-free growth at elevated pH and reduces ferric inhibition. Li X; Mercado R; Kernan T; West AC; Banta S Biotechnol Bioeng; 2014 Oct; 111(10):1940-8. PubMed ID: 24771134 [TBL] [Abstract][Full Text] [Related]
2. Enhancing isobutyric acid production from engineered Acidithiobacillus ferrooxidans cells via media optimization. Li X; West AC; Banta S Biotechnol Bioeng; 2016 Apr; 113(4):790-6. PubMed ID: 26370386 [TBL] [Abstract][Full Text] [Related]
3. Effects of chloride acclimation on iron oxyhydroxides and cell morphology during cultivation of Acidithiobacillus ferrooxidans. Xiong H; Guo R Environ Sci Technol; 2011 Jan; 45(1):235-40. PubMed ID: 21128632 [TBL] [Abstract][Full Text] [Related]
4. Ferrous iron oxidation by foam immobilized Acidithiobacillus ferrooxidans: Experiments and modeling. Jaisankar S; Modak JM Biotechnol Prog; 2009; 25(5):1328-42. PubMed ID: 19610075 [TBL] [Abstract][Full Text] [Related]
5. Increase in Fe2+-producing activity during growth of Acidithiobacillus ferrooxidans ATCC23270 on sulfur. Sugio T; Taha TM; Kanao T; Takeuchi F Biosci Biotechnol Biochem; 2007 Nov; 71(11):2663-9. PubMed ID: 17986795 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and properties of ternary (K, NH₄, H₃O)-jarosites precipitated from Acidithiobacillus ferrooxidans cultures in simulated bioleaching solutions. Jones FS; Bigham JM; Gramp JP; Tuovinen OH Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():391-9. PubMed ID: 25280720 [TBL] [Abstract][Full Text] [Related]
7. Manipulation of pyrite colonization and leaching by iron-oxidizing Acidithiobacillus species. Bellenberg S; Barthen R; Boretska M; Zhang R; Sand W; Vera M Appl Microbiol Biotechnol; 2015 Feb; 99(3):1435-49. PubMed ID: 25381488 [TBL] [Abstract][Full Text] [Related]
8. Engineering the iron-oxidizing chemolithoautotroph Acidithiobacillus ferrooxidans for biochemical production. Kernan T; Majumdar S; Li X; Guan J; West AC; Banta S Biotechnol Bioeng; 2016 Jan; 113(1):189-97. PubMed ID: 26174759 [TBL] [Abstract][Full Text] [Related]
9. The effect of CO2 availability on the growth, iron oxidation and CO2-fixation rates of pure cultures of Leptospirillum ferriphilum and Acidithiobacillus ferrooxidans. Bryan CG; Davis-Belmar CS; van Wyk N; Fraser MK; Dew D; Rautenbach GF; Harrison ST Biotechnol Bioeng; 2012 Jul; 109(7):1693-703. PubMed ID: 22383083 [TBL] [Abstract][Full Text] [Related]
10. Iron meteorites can support the growth of acidophilic chemolithoautotrophic microorganisms. González-Toril E; Martínez-Frías J; Gómez Gómez JM; Rull F; Amils R Astrobiology; 2005 Jun; 5(3):406-14. PubMed ID: 15941383 [TBL] [Abstract][Full Text] [Related]
11. Microbial iron management mechanisms in extremely acidic environments: comparative genomics evidence for diversity and versatility. Osorio H; Martínez V; Nieto PA; Holmes DS; Quatrini R BMC Microbiol; 2008 Nov; 8():203. PubMed ID: 19025650 [TBL] [Abstract][Full Text] [Related]
12. Dispersion of sulfur creates a valuable new growth medium formulation that enables earlier sulfur oxidation in relation to iron oxidation in Acidithiobacillus ferrooxidans cultures. Inaba Y; Kernan T; West AC; Banta S Biotechnol Bioeng; 2021 Aug; 118(8):3225-3238. PubMed ID: 34086346 [TBL] [Abstract][Full Text] [Related]
13. The growth, ferrous iron oxidation and ultrastructure of Acidithiobacillus ferrooxidans in the presence of dibutyl phthalate. Matlakowska R; Skudlarska E; Skłodowska A Pol J Microbiol; 2006; 55(3):203-10. PubMed ID: 17338273 [TBL] [Abstract][Full Text] [Related]
14. The nature of Schwertmannite and Jarosite mediated by two strains of Acidithiobacillus ferrooxidans with different ferrous oxidation ability. Zhu J; Gan M; Zhang D; Hu Y; Chai L Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2679-85. PubMed ID: 23623084 [TBL] [Abstract][Full Text] [Related]
15. Kinetics of anaerobic elemental sulfur oxidation by ferric iron in Acidithiobacillus ferrooxidans and protein identification by comparative 2-DE-MS/MS. Kucera J; Bouchal P; Cerna H; Potesil D; Janiczek O; Zdrahal Z; Mandl M Antonie Van Leeuwenhoek; 2012 Mar; 101(3):561-73. PubMed ID: 22057833 [TBL] [Abstract][Full Text] [Related]
16. Recovery of scrap iron metal value using biogenerated ferric iron. Ballor NR; Nesbitt CC; Lueking DR Biotechnol Bioeng; 2006 Apr; 93(6):1089-94. PubMed ID: 16440341 [TBL] [Abstract][Full Text] [Related]
17. An investigation of biooxidation ability of Acidithiobacillus ferrooxidans using NMR relaxation measurement. Tan SN; Burgar I; Chen M Bioresour Technol; 2011 Oct; 102(19):9143-7. PubMed ID: 21784630 [TBL] [Abstract][Full Text] [Related]
18. Immobilization of arsenite and ferric iron by Acidithiobacillus ferrooxidans and its relevance to acid mine drainage. Duquesne K; Lebrun S; Casiot C; Bruneel O; Personné JC; Leblanc M; Elbaz-Poulichet F; Morin G; Bonnefoy V Appl Environ Microbiol; 2003 Oct; 69(10):6165-73. PubMed ID: 14532077 [TBL] [Abstract][Full Text] [Related]
19. High-rate acidophilic ferrous iron oxidation in a biofilm airlift reactor and the role of the carrier material. Ebrahimi S; Fernández Morales FJ; Kleerebezem R; Heijnen JJ; van Loosdrecht MC Biotechnol Bioeng; 2005 May; 90(4):462-72. PubMed ID: 15772947 [TBL] [Abstract][Full Text] [Related]
20. Effects of electron transport inhibitors and uncouplers on the oxidation of ferrous iron and compounds interacting with ferric iron in Acidithiobacillus ferrooxidans. Chen Y; Suzuki I Can J Microbiol; 2005 Aug; 51(8):695-703. PubMed ID: 16234867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]