These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 2477144)
1. Enhanced tumor localization and in vivo stability of a monoclonal antibody radioiodinated using N-succinimidyl 3-(tri-n-butylstannyl)benzoate. Zalutsky MR; Noska MA; Colapinto EV; Garg PK; Bigner DD Cancer Res; 1989 Oct; 49(20):5543-9. PubMed ID: 2477144 [TBL] [Abstract][Full Text] [Related]
2. Improved therapeutic efficacy of a monoclonal antibody radioiodinated using N-succinimidyl-3-(tri-n-butylstannyl)benzoate. Schuster JM; Garg PK; Bigner DD; Zalutsky MR Cancer Res; 1991 Aug; 51(16):4164-9. PubMed ID: 1714341 [TBL] [Abstract][Full Text] [Related]
3. Radiohalogenation of a monoclonal antibody using an N-succinimidyl 3-(tri-n-butylstannyl)benzoate intermediate. Zalutsky MR; Narula AS Cancer Res; 1988 Mar; 48(6):1446-50. PubMed ID: 3345515 [TBL] [Abstract][Full Text] [Related]
4. Treatment of intracranial human glioma xenografts with 131I-labeled anti-tenascin monoclonal antibody 81C6. Lee Y; Bullard DE; Humphrey PA; Colapinto EV; Friedman HS; Zalutsky MR; Coleman RE; Bigner DD Cancer Res; 1988 May; 48(10):2904-10. PubMed ID: 2452014 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of an internalizing monoclonal antibody labeled using N-succinimidyl 3-[131I]iodo-4-phosphonomethylbenzoate ([131I]SIPMB), a negatively charged substituent bearing acylation agent. Shankar S; Vaidyanathan G; Affleck DJ; Peixoto K; Bigner DD; Zalutsky MR Nucl Med Biol; 2004 Oct; 31(7):909-19. PubMed ID: 15464393 [TBL] [Abstract][Full Text] [Related]
6. Human IgG2 constant region enhances in vivo stability of anti-tenascin antibody 81C6 compared with its murine parent. Reist CJ; Bigner DD; Zalutsky MR Clin Cancer Res; 1998 Oct; 4(10):2495-502. PubMed ID: 9796983 [TBL] [Abstract][Full Text] [Related]
7. Therapeutic efficacy of antiglioma mesenchymal extracellular matrix 131I-radiolabeled murine monoclonal antibody in a human glioma xenograft model. Lee YS; Bullard DE; Zalutsky MR; Coleman RE; Wikstrand CJ; Friedman HS; Colapinto EV; Bigner DD Cancer Res; 1988 Feb; 48(3):559-66. PubMed ID: 2446747 [TBL] [Abstract][Full Text] [Related]
8. Radioimmunotherapy of breast cancer xenografts with monoclonal antibody ICR12 against c-erbB2 p185: comparison of iodogen and N-succinimidyl 4-methyl-3-(tri-n-butylstannyl)benzoate radioiodination methods. Smellie WJ; Dean CJ; Sacks NP; Zalutsky MR; Garg PK; Carnochan P; Eccles SA Cancer Res; 1995 Dec; 55(23 Suppl):5842s-5846s. PubMed ID: 7493357 [TBL] [Abstract][Full Text] [Related]
9. Improved targeting of an anti-epidermal growth factor receptor variant III monoclonal antibody in tumor xenografts after labeling using N-succinimidyl 5-iodo-3-pyridinecarboxylate. Reist CJ; Archer GE; Wikstrand CJ; Bigner DD; Zalutsky MR Cancer Res; 1997 Apr; 57(8):1510-5. PubMed ID: 9108453 [TBL] [Abstract][Full Text] [Related]
10. Radioiodination via D-amino acid peptide enhances cellular retention and tumor xenograft targeting of an internalizing anti-epidermal growth factor receptor variant III monoclonal antibody. Foulon CF; Reist CJ; Bigner DD; Zalutsky MR Cancer Res; 2000 Aug; 60(16):4453-60. PubMed ID: 10969792 [TBL] [Abstract][Full Text] [Related]
11. Targeting human cancer xenografts with monoclonal antibodies labeled using radioiodinated, diethylenetriaminepentaacetic acid-appended peptides. Stein R; Govindan SV; Mattes MJ; Shih LB; Griffiths GL; Hansen HJ; Goldenberg DM Clin Cancer Res; 1999 Oct; 5(10 Suppl):3079s-3087s. PubMed ID: 10541347 [TBL] [Abstract][Full Text] [Related]
12. Antiepidermal growth factor variant III scFv fragment: effect of radioiodination method on tumor targeting and normal tissue clearance. Shankar S; Vaidyanathan G; Kuan CT; Bigner DD; Zalutsky MR Nucl Med Biol; 2006 Jan; 33(1):101-10. PubMed ID: 16459265 [TBL] [Abstract][Full Text] [Related]
13. Effects of radiolabeling monoclonal antibodies with a residualizing iodine radiolabel on the accretion of radioisotope in tumors. Stein R; Goldenberg DM; Thorpe SR; Basu A; Mattes MJ Cancer Res; 1995 Jul; 55(14):3132-9. PubMed ID: 7606734 [TBL] [Abstract][Full Text] [Related]
14. The effects of local hyperthermia on the catabolism of a radioiodinated chimeric monoclonal antibody. Hauck ML; Zalutsky MR Clin Cancer Res; 1998 Sep; 4(9):2071-7. PubMed ID: 9748121 [TBL] [Abstract][Full Text] [Related]
15. Assessment of radiochemical design of antibodies using an ester bond as the metabolizable linkage: evaluation of maleimidoethyl 3-(tri-n-butylstannyl)hippurate as a radioiodination reagent of antibodies for diagnostic and therapeutic applications. Arano Y; Wakisaka K; Ohmono Y; Uezono T; Akizawa H; Nakayama M; Sakahara H; Tanaka C; Konishi J; Yokoyama A Bioconjug Chem; 1996; 7(6):628-37. PubMed ID: 8950481 [TBL] [Abstract][Full Text] [Related]
16. Enhanced delivery of a monoclonal antibody F(ab')2 fragment to subcutaneous human glioma xenografts using local hyperthermia. Cope DA; Dewhirst MW; Friedman HS; Bigner DD; Zalutsky MR Cancer Res; 1990 Mar; 50(6):1803-9. PubMed ID: 2407344 [TBL] [Abstract][Full Text] [Related]