These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24771517)

  • 1. Redundancy-weighting for better inference of protein structural features.
    Yanover C; Vanetik N; Levitt M; Kolodny R; Keasar C
    Bioinformatics; 2014 Aug; 30(16):2295-301. PubMed ID: 24771517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redundancy-weighting the PDB for detailed secondary structure prediction using deep-learning models.
    Sidi T; Keasar C
    Bioinformatics; 2020 Jun; 36(12):3733-3738. PubMed ID: 32186698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic disorder in the Protein Data Bank.
    Le Gall T; Romero PR; Cortese MS; Uversky VN; Dunker AK
    J Biomol Struct Dyn; 2007 Feb; 24(4):325-42. PubMed ID: 17206849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of RNA-binding amino acids from protein and RNA sequences.
    Choi S; Han K
    BMC Bioinformatics; 2011; 12 Suppl 13(Suppl 13):S7. PubMed ID: 22373313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of secondary structural content of proteins from their amino acid composition alone. II. The paradox with secondary structural class.
    Eisenhaber F; Frömmel C; Argos P
    Proteins; 1996 Jun; 25(2):169-79. PubMed ID: 8811733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art.
    Walia RR; Caragea C; Lewis BA; Towfic F; Terribilini M; El-Manzalawy Y; Dobbs D; Honavar V
    BMC Bioinformatics; 2012 May; 13():89. PubMed ID: 22574904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maximising the size of non-redundant protein datasets using graph theory.
    Bull SC; Muldoon MR; Doig AJ
    PLoS One; 2013; 8(2):e55484. PubMed ID: 23393584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of sequence and structure-based datasets for nonredundant structural data mining.
    Chu CK; Feng LL; Wouters MA
    Proteins; 2005 Sep; 60(4):577-83. PubMed ID: 16001417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IDPM: an online database for ion distribution in protein molecules.
    Xiang X; Liu H
    BMC Bioinformatics; 2018 Mar; 19(1):102. PubMed ID: 29548284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progress of structural genomics initiatives: an analysis of solved target structures.
    Todd AE; Marsden RL; Thornton JM; Orengo CA
    J Mol Biol; 2005 May; 348(5):1235-60. PubMed ID: 15854658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the dynamical incompleteness of the Protein Data Bank.
    Marino-Buslje C; Monzon AM; Zea DJ; Fornasari MS; Parisi G
    Brief Bioinform; 2019 Jan; 20(1):356-359. PubMed ID: 28981583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving protein secondary structure prediction based on short subsequences with local structure similarity.
    Lin HN; Sung TY; Ho SY; Hsu WL
    BMC Genomics; 2010 Dec; 11 Suppl 4(Suppl 4):S4. PubMed ID: 21143813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 3D sequence-independent representation of the protein data bank.
    Fischer D; Tsai CJ; Nussinov R; Wolfson H
    Protein Eng; 1995 Oct; 8(10):981-97. PubMed ID: 8771179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth of novel protein structural data.
    Levitt M
    Proc Natl Acad Sci U S A; 2007 Feb; 104(9):3183-8. PubMed ID: 17360626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Criteria to Extract High-Quality Protein Data Bank Subsets for Structure Users.
    Carugo O; Djinović-Carugo K
    Methods Mol Biol; 2016; 1415():139-52. PubMed ID: 27115631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure motif discovery and mining the PDB.
    Jonassen I; Eidhammer I; Conklin D; Taylor WR
    Bioinformatics; 2002 Feb; 18(2):362-7. PubMed ID: 11847094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate Representation of Protein-Ligand Structural Diversity in the Protein Data Bank (PDB).
    Shinada NK; Schmidtke P; de Brevern AG
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32213914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orientation-dependent backbone-only residue pair scoring functions for fixed backbone protein design.
    Bordner AJ
    BMC Bioinformatics; 2010 Apr; 11():192. PubMed ID: 20398384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.