These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 24771517)

  • 21. TESE: generating specific protein structure test set ensembles.
    Sirocco F; Tosatto SC
    Bioinformatics; 2008 Nov; 24(22):2632-3. PubMed ID: 18796478
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Random sampling of the Protein Data Bank: RaSPDB.
    Carugo O
    Sci Rep; 2021 Dec; 11(1):24178. PubMed ID: 34921198
    [TBL] [Abstract][Full Text] [Related]  

  • 23. pdbFun: mass selection and fast comparison of annotated PDB residues.
    Ausiello G; Zanzoni A; Peluso D; Via A; Helmer-Citterich M
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W133-7. PubMed ID: 15980442
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The protein-small-molecule database, a non-redundant structural resource for the analysis of protein-ligand binding.
    Wallach I; Lilien R
    Bioinformatics; 2009 Mar; 25(5):615-20. PubMed ID: 19153135
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using Recursive Feature Selection with Random Forest to Improve Protein Structural Class Prediction for Low-Similarity Sequences.
    Wang Y; Xu Y; Yang Z; Liu X; Dai Q
    Comput Math Methods Med; 2021; 2021():5529389. PubMed ID: 34055035
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Amino acid torsion angles enable prediction of protein fold classification.
    Tian K; Zhao X; Wan X; Yau SS
    Sci Rep; 2020 Dec; 10(1):21773. PubMed ID: 33303802
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sequence-similar, structure-dissimilar protein pairs in the PDB.
    Kosloff M; Kolodny R
    Proteins; 2008 May; 71(2):891-902. PubMed ID: 18004789
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A PDB-wide, evolution-based assessment of protein-protein interfaces.
    Baskaran K; Duarte JM; Biyani N; Bliven S; Capitani G
    BMC Struct Biol; 2014 Oct; 14():22. PubMed ID: 25326082
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Feature and Algorithm Selection Method for Improving the Prediction of Protein Structural Class.
    Ni Q; Chen L
    Comb Chem High Throughput Screen; 2017; 20(7):612-621. PubMed ID: 28292249
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mining the protein data bank with CReF to predict approximate 3-D structures of polypeptides.
    Dorn M; de Souza ON
    Int J Data Min Bioinform; 2010; 4(3):281-99. PubMed ID: 20681480
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Correction for phylogeny, small number of observations and data redundancy improves the identification of coevolving amino acid pairs using mutual information.
    Buslje CM; Santos J; Delfino JM; Nielsen M
    Bioinformatics; 2009 May; 25(9):1125-31. PubMed ID: 19276150
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chameleon sequences in neurodegenerative diseases.
    Bahramali G; Goliaei B; Minuchehr Z; Salari A
    Biochem Biophys Res Commun; 2016 Mar; 472(1):209-16. PubMed ID: 26920059
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comprehensive and non-redundant database of protein domain movements.
    Qi G; Lee R; Hayward S
    Bioinformatics; 2005 Jun; 21(12):2832-8. PubMed ID: 15802286
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A general clustering approach with application to the Miyazawa-Jernigan potentials for amino acids.
    Esteve JG; Falceto F
    Proteins; 2004 Jun; 55(4):999-1004. PubMed ID: 15146496
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Designability of protein structures: a lattice-model study using the Miyazawa-Jernigan matrix.
    Li H; Tang C; Wingreen NS
    Proteins; 2002 Nov; 49(3):403-12. PubMed ID: 12360530
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Homology-based hydrogen bond information improves crystallographic structures in the PDB.
    van Beusekom B; Touw WG; Tatineni M; Somani S; Rajagopal G; Luo J; Gilliland GL; Perrakis A; Joosten RP
    Protein Sci; 2018 Mar; 27(3):798-808. PubMed ID: 29168245
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploring bias in the Protein Data Bank using contrast classifiers.
    Peng K; Obradovic Z; Vucetic S
    Pac Symp Biocomput; 2004; ():435-46. PubMed ID: 14992523
    [TBL] [Abstract][Full Text] [Related]  

  • 38. FFAS-3D: improving fold recognition by including optimized structural features and template re-ranking.
    Xu D; Jaroszewski L; Li Z; Godzik A
    Bioinformatics; 2014 Mar; 30(5):660-7. PubMed ID: 24130308
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Knowledge-based prediction of protein backbone conformation using a structural alphabet.
    Vetrivel I; Mahajan S; Tyagi M; Hoffmann L; Sanejouand YH; Srinivasan N; de Brevern AG; Cadet F; Offmann B
    PLoS One; 2017; 12(11):e0186215. PubMed ID: 29161266
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of secondary structural content of proteins from their amino acid composition alone. I. New analytic vector decomposition methods.
    Eisenhaber F; Imperiale F; Argos P; Frömmel C
    Proteins; 1996 Jun; 25(2):157-68. PubMed ID: 8811732
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.