These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 24771658)

  • 1. RegPhos 2.0: an updated resource to explore protein kinase-substrate phosphorylation networks in mammals.
    Huang KY; Wu HY; Chen YJ; Lu CT; Su MG; Hsieh YC; Tsai CM; Lin KI; Huang HD; Lee TY; Chen YJ
    Database (Oxford); 2014; 2014(0):bau034. PubMed ID: 24771658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RegPhos: a system to explore the protein kinase-substrate phosphorylation network in humans.
    Lee TY; Bo-Kai Hsu J; Chang WC; Huang HD
    Nucleic Acids Res; 2011 Jan; 39(Database issue):D777-87. PubMed ID: 21037261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UbiNet: an online resource for exploring the functional associations and regulatory networks of protein ubiquitylation.
    Nguyen VN; Huang KY; Weng JT; Lai KR; Lee TY
    Database (Oxford); 2016; 2016():. PubMed ID: 27114492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NetworKIN: a resource for exploring cellular phosphorylation networks.
    Linding R; Jensen LJ; Pasculescu A; Olhovsky M; Colwill K; Bork P; Yaffe MB; Pawson T
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D695-9. PubMed ID: 17981841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive phosphoproteome analysis of INS-1 pancreatic β-cells using various digestion strategies coupled with liquid chromatography-tandem mass spectrometry.
    Han D; Moon S; Kim Y; Ho WK; Kim K; Kang Y; Jun H; Kim Y
    J Proteome Res; 2012 Apr; 11(4):2206-23. PubMed ID: 22276854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PlantPhos: using maximal dependence decomposition to identify plant phosphorylation sites with substrate site specificity.
    Lee TY; Bretaña NA; Lu CT
    BMC Bioinformatics; 2011 Jun; 12():261. PubMed ID: 21703007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PhosphoPOINT: a comprehensive human kinase interactome and phospho-protein database.
    Yang CY; Chang CH; Yu YL; Lin TC; Lee SA; Yen CC; Yang JM; Lai JM; Hong YR; Tseng TL; Chao KM; Huang CY
    Bioinformatics; 2008 Aug; 24(16):i14-20. PubMed ID: 18689816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. KinPred: A unified and sustainable approach for harnessing proteome-level human kinase-substrate predictions.
    Xue B; Jordan B; Rizvi S; Naegle KM
    PLoS Comput Biol; 2021 Feb; 17(2):e1008681. PubMed ID: 33556051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporating substrate sequence motifs and spatial amino acid composition to identify kinase-specific phosphorylation sites on protein three-dimensional structures.
    Su MG; Lee TY
    BMC Bioinformatics; 2013; 14 Suppl 16(Suppl 16):S2. PubMed ID: 24564522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein kinases associated with the yeast phosphoproteome.
    Brinkworth RI; Munn AL; Kobe B
    BMC Bioinformatics; 2006 Jan; 7():47. PubMed ID: 16445868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PhosphoPICK: modelling cellular context to map kinase-substrate phosphorylation events.
    Patrick R; Lê Cao KA; Kobe B; Bodén M
    Bioinformatics; 2015 Feb; 31(3):382-9. PubMed ID: 25304781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. P³DB 3.0: From plant phosphorylation sites to protein networks.
    Yao Q; Ge H; Wu S; Zhang N; Chen W; Xu C; Gao J; Thelen JJ; Xu D
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D1206-13. PubMed ID: 24243849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinformatics Analysis of Protein Phosphorylation in Plant Systems Biology Using P3DB.
    Yao Q; Xu D
    Methods Mol Biol; 2017; 1558():127-138. PubMed ID: 28150236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling Kinase Activation Dynamics Using Kinase-Substrate Relationships from Temporal Large-Scale Phosphoproteomics Studies.
    Domanova W; Krycer J; Chaudhuri R; Yang P; Vafaee F; Fazakerley D; Humphrey S; James D; Kuncic Z
    PLoS One; 2016; 11(6):e0157763. PubMed ID: 27336693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GPS: a comprehensive www server for phosphorylation sites prediction.
    Xue Y; Zhou F; Zhu M; Ahmed K; Chen G; Yao X
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W184-7. PubMed ID: 15980451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The human DEPhOsphorylation Database DEPOD: 2019 update.
    Damle NP; Köhn M
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 31836896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Deciphering cellular processes responding to lethality of 17
    Li Y; Liu X; Wang Y; Liu Z; Ye M; Wang H
    Se Pu; 2024 Apr; 42(4):333-344. PubMed ID: 38566422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KANPHOS: A Database of Kinase-Associated Neural Protein Phosphorylation in the Brain.
    Ahammad RU; Nishioka T; Yoshimoto J; Kannon T; Amano M; Funahashi Y; Tsuboi D; Faruk MO; Yamahashi Y; Yamada K; Nagai T; Kaibuchi K
    Cells; 2021 Dec; 11(1):. PubMed ID: 35011609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphoproteomics Meets Chemical Genetics: Approaches for Global Mapping and Deciphering the Phosphoproteome.
    Jurcik J; Sivakova B; Cipakova I; Selicky T; Stupenova E; Jurcik M; Osadska M; Barath P; Cipak L
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33076458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. qPhos: a database of protein phosphorylation dynamics in humans.
    Yu K; Zhang Q; Liu Z; Zhao Q; Zhang X; Wang Y; Wang ZX; Jin Y; Li X; Liu ZX; Xu RH
    Nucleic Acids Res; 2019 Jan; 47(D1):D451-D458. PubMed ID: 30380102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.