These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 24771712)

  • 1. Polyethlyene glycol microgels to deliver bioactive nerve growth factor.
    Stukel J; Thompson S; Simon L; Willits R
    J Biomed Mater Res A; 2015 Feb; 103(2):604-13. PubMed ID: 24771712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel microgel-based scaffolds to study the effect of degradability on human dermal fibroblasts.
    Zhou W; Stukel J; AlNiemi A; Willits RK
    Biomed Mater; 2018 Jul; 13(5):055007. PubMed ID: 29869613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modular poly(ethylene glycol) scaffolds provide the ability to decouple the effects of stiffness and protein concentration on PC12 cells.
    Scott RA; Elbert DL; Willits RK
    Acta Biomater; 2011 Nov; 7(11):3841-9. PubMed ID: 21787889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of protein release from poly(ethylene glycol) hydrogels with crosslink density gradients.
    Bal T; Kepsutlu B; Kizilel S
    J Biomed Mater Res A; 2014 Feb; 102(2):487-95. PubMed ID: 23505227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the poly(ethylene glycol) hydrogel crosslinking mechanism on protein release.
    Lee S; Tong X; Yang F
    Biomater Sci; 2016 Mar; 4(3):405-11. PubMed ID: 26539660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A photodimerization approach to crosslink and functionalize microgels.
    Sirpal S; Gattás-Asfura KM; Leblanc RM
    Colloids Surf B Biointerfaces; 2007 Aug; 58(2):116-20. PubMed ID: 17400431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel degradable poly(ethylene glycol) hydrogels for controlled release of protein.
    Zhao X; Harris JM
    J Pharm Sci; 1998 Nov; 87(11):1450-8. PubMed ID: 9811505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maintaining bioactivity of NGF for controlled release from PLGA using PEG.
    Johnson PJ; Skornia SL; Stabenfeldt SE; Willits RK
    J Biomed Mater Res A; 2008 Aug; 86(2):420-7. PubMed ID: 17969039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-viral vector delivery from PEG-hyaluronic acid hydrogels.
    Wieland JA; Houchin-Ray TL; Shea LD
    J Control Release; 2007 Jul; 120(3):233-41. PubMed ID: 17582640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-Term Controlled Protein Release from Poly(Ethylene Glycol) Hydrogels by Modulating Mesh Size and Degradation.
    Tong X; Lee S; Bararpour L; Yang F
    Macromol Biosci; 2015 Dec; 15(12):1679-86. PubMed ID: 26259711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable Microsphere-Hydrogel Ocular Drug Delivery System for Controlled and Extended Release of Bioactive Aflibercept In Vitro.
    Liu W; Lee BS; Mieler WF; Kang-Mieler JJ
    Curr Eye Res; 2019 Mar; 44(3):264-274. PubMed ID: 30295090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering.
    Holland TA; Tabata Y; Mikos AG
    J Control Release; 2005 Jan; 101(1-3):111-25. PubMed ID: 15588898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protease-degradable microgels for protein delivery for vascularization.
    Foster GA; Headen DM; González-García C; Salmerón-Sánchez M; Shirwan H; García AJ
    Biomaterials; 2017 Jan; 113():170-175. PubMed ID: 27816000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of precipitation-formed polyethylene glycol microgels are controlled by molecular weight of reactants.
    Thompson S; Stukel J; AlNiemi A; Willits RK
    J Vis Exp; 2013 Dec; (82):e51002. PubMed ID: 24378988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid and Facile Light-Based Approach to Fabricate Protease-Degradable Poly(ethylene glycol)-norbornene Microgels for Cell Encapsulation.
    Mora-Boza A; Ghebrezadik SG; Leisen JE; García AJ
    Adv Healthc Mater; 2023 Oct; 12(26):e2300942. PubMed ID: 37235850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustained local delivery of bioactive nerve growth factor in the central nervous system via tunable diblock copolypeptide hydrogel depots.
    Song B; Song J; Zhang S; Anderson MA; Ao Y; Yang CY; Deming TJ; Sofroniew MV
    Biomaterials; 2012 Dec; 33(35):9105-16. PubMed ID: 22985994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering.
    Jiang Y; Chen J; Deng C; Suuronen EJ; Zhong Z
    Biomaterials; 2014 Jun; 35(18):4969-85. PubMed ID: 24674460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradative properties and cytocompatibility of a mixed-mode hydrogel containing oligo[poly(ethylene glycol)fumarate] and poly(ethylene glycol)dithiol.
    Brink KS; Yang PJ; Temenoff JS
    Acta Biomater; 2009 Feb; 5(2):570-9. PubMed ID: 18948068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermosensitive block copolymer hydrogels based on poly(ɛ-caprolactone) and polyethylene glycol for biomedical applications: state of the art and future perspectives.
    Boffito M; Sirianni P; Di Rienzo AM; Chiono V
    J Biomed Mater Res A; 2015 Mar; 103(3):1276-90. PubMed ID: 24912941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved vascularization of porous scaffolds through growth factor delivery from heparinized polyethylene glycol hydrogels.
    Janse van Rensburg A; Davies NH; Oosthuysen A; Chokoza C; Zilla P; Bezuidenhout D
    Acta Biomater; 2017 Feb; 49():89-100. PubMed ID: 27865963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.