These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 24772196)

  • 21. Robotic deposition and in vitro characterization of 3D gelatin-bioactive glass hybrid scaffolds for biomedical applications.
    Gao C; Rahaman MN; Gao Q; Teramoto A; Abe K
    J Biomed Mater Res A; 2013 Jul; 101(7):2027-37. PubMed ID: 23255226
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH; El-Amin SF; Scott KD; Laurencin CT
    J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the role of alginate coating on the mechanical and biological properties of 58S bioactive glass scaffolds.
    Keshavarz M; Alizadeh P
    Int J Biol Macromol; 2021 Jan; 167():947-961. PubMed ID: 33186647
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioactive glass foam scaffolds are remodelled by osteoclasts and support the formation of mineralized matrix and vascular networks in vitro.
    Midha S; van den Bergh W; Kim TB; Lee PD; Jones JR; Mitchell CA
    Adv Healthc Mater; 2013 Mar; 2(3):490-9. PubMed ID: 23184651
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hybrid matrix grafts to favor tissue regeneration in rabbit femur bone lesions.
    Goy DP; Gorosito E; Costa HS; Mortarino P; Pedemonte NA; Toledo J; Mansur HS; Pereira MM; Battaglino R; Feldman S
    Open Biomed Eng J; 2012; 6():85-91. PubMed ID: 22848334
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications.
    Misra SK; Ansari TI; Valappil SP; Mohn D; Philip SE; Stark WJ; Roy I; Knowles JC; Salih V; Boccaccini AR
    Biomaterials; 2010 Apr; 31(10):2806-15. PubMed ID: 20045554
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Repairing rat calvarial defects by adipose mesenchymal stem cells and novel freeze-dried three-dimensional nanofibrous scaffolds.
    Khoramgah MS; Ghanbarian H; Ranjbari J; Ebrahimi N; Tabatabaei Mirakabad FS; Ahmady Roozbahany N; Abbaszadeh HA; Hosseinzadeh S
    Bioimpacts; 2023; 13(1):31-42. PubMed ID: 36817003
    [No Abstract]   [Full Text] [Related]  

  • 28. Three dimensional polyvinyl alcohol scaffolds modified with collagen for HepG2 cell culture.
    Meng D; Lei X; Li Y; Kong Y; Huang D; Zhang G
    J Biomater Appl; 2020; 35(4-5):459-470. PubMed ID: 32579044
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication and characterization of porous alginate/polyvinyl alcohol hybrid scaffolds for 3D cell culture.
    Cho SH; Oh SH; Lee JH
    J Biomater Sci Polym Ed; 2005; 16(8):933-47. PubMed ID: 16128229
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models.
    El-Rashidy AA; Roether JA; Harhaus L; Kneser U; Boccaccini AR
    Acta Biomater; 2017 Oct; 62():1-28. PubMed ID: 28844964
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications.
    Nie L; Chen D; Suo J; Zou P; Feng S; Yang Q; Yang S; Ye S
    Colloids Surf B Biointerfaces; 2012 Dec; 100():169-76. PubMed ID: 22766294
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SLS 3D Printing To Fabricate Poly(vinyl alcohol)/Hydroxyapatite Bioactive Composite Porous Scaffolds and Their Bone Defect Repair Property.
    Li T; Peng Z; Lv Q; Li L; Zhang C; Pang L; Zhang C; Li Y; Chen Y; Tang X
    ACS Biomater Sci Eng; 2023 Dec; 9(12):6734-6744. PubMed ID: 37939039
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of bioactive glass particles on osteogenic differentiation of adipose-derived mesenchymal stem cells seeded on lactide and caprolactone based scaffolds.
    Larrañaga A; Alonso-Varona A; Palomares T; Rubio-Azpeitia E; Aldazabal P; Martin FJ; Sarasua JR
    J Biomed Mater Res A; 2015 Dec; 103(12):3815-24. PubMed ID: 26074489
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly degradable porous melt-derived bioactive glass foam scaffolds for bone regeneration.
    Nommeots-Nomm A; Labbaf S; Devlin A; Todd N; Geng H; Solanki AK; Tang HM; Perdika P; Pinna A; Ejeian F; Tsigkou O; Lee PD; Esfahani MHN; Mitchell CA; Jones JR
    Acta Biomater; 2017 Jul; 57():449-461. PubMed ID: 28457960
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioactive glass-collagen/poly (glycolic acid) scaffold nanoparticles exhibit improved biological properties and enhance osteogenic lineage differentiation of mesenchymal stem cells.
    Toosi S; Naderi-Meshkin H; Esmailzadeh Z; Behravan G; Ramakrishna S; Behravan J
    Front Bioeng Biotechnol; 2022; 10():963996. PubMed ID: 36159698
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydroxyapatite formation on sol-gel derived poly(ε-caprolactone)/bioactive glass hybrid biomaterials.
    Allo BA; Rizkalla AS; Mequanint K
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3148-56. PubMed ID: 22625179
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of HA and BG in engineering poly(ε-caprolactone) porous scaffolds for accelerating cranial bone regeneration.
    Yin HM; Li X; Wang P; Ren Y; Liu W; Xu JZ; Li JH; Li ZM
    J Biomed Mater Res A; 2019 Mar; 107(3):654-662. PubMed ID: 30474348
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Indirect rapid prototyping of sol-gel hybrid glass scaffolds for bone regeneration - Effects of organic crosslinker valence, content and molecular weight on mechanical properties.
    Hendrikx S; Kascholke C; Flath T; Schumann D; Gressenbuch M; Schulze FP; Hacker MC; Schulz-Siegmund M
    Acta Biomater; 2016 Apr; 35():318-29. PubMed ID: 26925964
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bismuth-coated 80S15C bioactive glass scaffolds for photothermal antitumor therapy and bone regeneration.
    Du J; Ding H; Fu S; Li D; Yu B
    Front Bioeng Biotechnol; 2022; 10():1098923. PubMed ID: 36760751
    [No Abstract]   [Full Text] [Related]  

  • 40. Improved dimensional stability with bioactive glass fibre skeleton in poly(lactide-co-glycolide) porous scaffolds for tissue engineering.
    Haaparanta AM; Uppstu P; Hannula M; Ellä V; Rosling A; Kellomäki M
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():457-66. PubMed ID: 26249615
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.