These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
460 related articles for article (PubMed ID: 24772672)
1. Modeling Culex tarsalis abundance on the northern Colorado front range using a landscape-level approach. Schurich JA; Kumar S; Eisen L; Moore CG J Am Mosq Control Assoc; 2014 Mar; 30(1):7-20. PubMed ID: 24772672 [TBL] [Abstract][Full Text] [Related]
2. Mosquitoes and West Nile virus along a river corridor from prairie to montane habitats in eastern Colorado. Barker CM; Bolling BG; Black WC; Moore CG; Eisen L J Vector Ecol; 2009 Dec; 34(2):276-93. PubMed ID: 20836831 [TBL] [Abstract][Full Text] [Related]
3. The effect of spatial and temporal subsetting on Culex tarsalis abundance models--a design for sensible reduction of vector surveillance. Brown HE; Doyle MS; Cox J; Eisen RJ; Nasci RS J Am Mosq Control Assoc; 2011 Jun; 27(2):120-8. PubMed ID: 21805843 [TBL] [Abstract][Full Text] [Related]
4. Spatio-temporal impacts of aerial adulticide applications on populations of West Nile virus vector mosquitoes. Holcomb KM; Reiner RC; Barker CM Parasit Vectors; 2021 Feb; 14(1):120. PubMed ID: 33627165 [TBL] [Abstract][Full Text] [Related]
5. Seasonal patterns for entomological measures of risk for exposure to Culex vectors and West Nile virus in relation to human disease cases in northeastern Colorado. Bolling BG; Barker CM; Moore CG; Pape WJ; Eisen L J Med Entomol; 2009 Nov; 46(6):1519-31. PubMed ID: 19960707 [TBL] [Abstract][Full Text] [Related]
6. National and regional associations between human West Nile virus incidence and demographic, landscape, and land use conditions in the coterminous United States. DeGroote JP; Sugumaran R Vector Borne Zoonotic Dis; 2012 Aug; 12(8):657-65. PubMed ID: 22607071 [TBL] [Abstract][Full Text] [Related]
7. Modeling the spatial distribution of mosquito vectors for West Nile virus in Connecticut, USA. Diuk-Wasser MA; Brown HE; Andreadis TG; Fish D Vector Borne Zoonotic Dis; 2006; 6(3):283-95. PubMed ID: 16989568 [TBL] [Abstract][Full Text] [Related]
8. Culex restuans (Diptera: Culicidae) relative abundance and vector competence for West Nile Virus. Ebel GD; Rochlin I; Longacker J; Kramer LD J Med Entomol; 2005 Sep; 42(5):838-43. PubMed ID: 16363169 [TBL] [Abstract][Full Text] [Related]
9. West Nile virus in host-seeking mosquitoes within a residential neighborhood in Grand Forks, North Dakota. Bell JA; Mickelson NJ; Vaughan JA Vector Borne Zoonotic Dis; 2005; 5(4):373-82. PubMed ID: 16417433 [TBL] [Abstract][Full Text] [Related]
10. Larval nutritional stress does not affect vector competence for West Nile virus (WNV) in Culex tarsalis. Dodson BL; Kramer LD; Rasgon JL Vector Borne Zoonotic Dis; 2011 Nov; 11(11):1493-7. PubMed ID: 21867417 [TBL] [Abstract][Full Text] [Related]
11. The contribution of Culex pipiens complex mosquitoes to transmission and persistence of West Nile virus in North America. Andreadis TG J Am Mosq Control Assoc; 2012 Dec; 28(4 Suppl):137-51. PubMed ID: 23401954 [TBL] [Abstract][Full Text] [Related]
12. Modeling monthly variation of Culex tarsalis (Diptera: Culicidae) abundance and West Nile Virus infection rate in the Canadian Prairies. Chen CC; Epp T; Jenkins E; Waldner C; Curry PS; Soos C Int J Environ Res Public Health; 2013 Jul; 10(7):3033-51. PubMed ID: 23880728 [TBL] [Abstract][Full Text] [Related]
13. Ecological niche modeling of mosquito vectors of West Nile virus in St. John's County, Florida, USA. Sallam MF; Xue RD; Pereira RM; Koehler PG Parasit Vectors; 2016 Jun; 9(1):371. PubMed ID: 27357295 [TBL] [Abstract][Full Text] [Related]
14. Developing operational algorithms using linear and non-linear squares estimation in Python for the identification of Culex pipiens and Culex restuans in a mosquito abatement district (Cook County, Illinois, USA). Jacob BJ; Gu W; Caamano EX; Novak RJ Geospat Health; 2009 May; 3(2):157-76. PubMed ID: 19440960 [TBL] [Abstract][Full Text] [Related]
15. Abundance of West Nile virus mosquito vectors in relation to climate and landscape variables. Deichmeister JM; Telang A J Vector Ecol; 2011 Jun; 36(1):75-85. PubMed ID: 21635644 [TBL] [Abstract][Full Text] [Related]
16. Temperature and time of host-seeking activity impact the efficacy of chemical control interventions targeting the West Nile virus vector, Culex tarsalis. Kalmouni J; Will JB; Townsend J; Paaijmans KP PLoS Negl Trop Dis; 2024 Aug; 18(8):e0012460. PubMed ID: 39213461 [TBL] [Abstract][Full Text] [Related]
17. Identification of environmental covariates of West Nile virus vector mosquito population abundance. Trawinski PR; Mackay DS Vector Borne Zoonotic Dis; 2010 Jun; 10(5):515-26. PubMed ID: 20482343 [TBL] [Abstract][Full Text] [Related]
18. Impact of aerial spraying of pyrethrin insecticide on Culex pipiens and Culex tarsalis (Diptera: Culicidae) abundance and West Nile virus infection rates in an urban/suburban area of Sacramento County, California. Elnaiem DE; Kelley K; Wright S; Laffey R; Yoshimura G; Reed M; Goodman G; Thiemann T; Reimer L; Reisen WK; Brown D J Med Entomol; 2008 Jul; 45(4):751-7. PubMed ID: 18714879 [TBL] [Abstract][Full Text] [Related]
19. Host-selection patterns of Culex tarsalis (Diptera: Culicidae) determine the spatial heterogeneity of West Nile virus enzootic activity in northern California. Campbell R; Thiemann TC; Lemenager D; Reisen WK J Med Entomol; 2013 Nov; 50(6):1303-9. PubMed ID: 24843936 [TBL] [Abstract][Full Text] [Related]
20. Entomological studies along the Colorado Front Range during a period of intense West Nile virus activity. Bolling BG; Moore CG; Anderson SL; Blair CD; Beaty BJ J Am Mosq Control Assoc; 2007 Mar; 23(1):37-46. PubMed ID: 17536366 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]