These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
337 related articles for article (PubMed ID: 24773046)
1. Statistical length measurement method by direct imaging of carbon nanotubes. Bengio EA; Tsentalovich DE; Behabtu N; Kleinerman O; Kesselman E; Schmidt J; Talmon Y; Pasquali M ACS Appl Mater Interfaces; 2014 May; 6(9):6139-46. PubMed ID: 24773046 [TBL] [Abstract][Full Text] [Related]
2. Spontaneous dissolution of ultralong single- and multiwalled carbon nanotubes. Parra-Vasquez AN; Behabtu N; Green MJ; Pint CL; Young CC; Schmidt J; Kesselman E; Goyal A; Ajayan PM; Cohen Y; Talmon Y; Hauge RH; Pasquali M ACS Nano; 2010 Jul; 4(7):3969-78. PubMed ID: 20593770 [TBL] [Abstract][Full Text] [Related]
3. Cryogenic-temperature electron microscopy direct imaging of carbon nanotubes and graphene solutions in superacids. Kleinerman O; Parra-Vasquez AN; Green MJ; Behabtu N; Schmidt J; Kesselman E; Young CC; Cohen Y; Pasquali M; Talmon Y J Microsc; 2015 Jul; 259(1):16-25. PubMed ID: 25818279 [TBL] [Abstract][Full Text] [Related]
4. Exposure and emission measurements during production, purification, and functionalization of arc-discharge-produced multi-walled carbon nanotubes. Hedmer M; Isaxon C; Nilsson PT; Ludvigsson L; Messing ME; Genberg J; Skaug V; Bohgard M; Tinnerberg H; Pagels JH Ann Occup Hyg; 2014 Apr; 58(3):355-79. PubMed ID: 24389082 [TBL] [Abstract][Full Text] [Related]
5. Carbon Nanotube Emissions from Arc Discharge Production: Classification of Particle Types with Electron Microscopy and Comparison with Direct Reading Techniques. Ludvigsson L; Isaxon C; Nilsson PT; Tinnerberg H; Messing ME; Rissler J; Skaug V; Gudmundsson A; Bohgard M; Hedmer M; Pagels J Ann Occup Hyg; 2016 May; 60(4):493-512. PubMed ID: 26748380 [TBL] [Abstract][Full Text] [Related]
6. Electron field emission characteristics and field evaporation of a single carbon nanotube. Wang MS; Peng LM; Wang JY; Chen Q J Phys Chem B; 2005 Jan; 109(1):110-3. PubMed ID: 16850991 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of length-controlled aerosol carbon nanotubes and their dispersion stability in aqueous solution. Moon YK; Lee J; Lee JK; Kim TK; Kim SH Langmuir; 2009 Feb; 25(3):1739-43. PubMed ID: 19132930 [TBL] [Abstract][Full Text] [Related]
9. Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration. Jung JH; Hwang GB; Lee JE; Bae GN Langmuir; 2011 Aug; 27(16):10256-64. PubMed ID: 21751779 [TBL] [Abstract][Full Text] [Related]
10. In situ measurements and transmission electron microscopy of carbon nanotube field-effect transistors. Kim T; Kim S; Olson E; Zuo JM Ultramicroscopy; 2008 Jun; 108(7):613-8. PubMed ID: 18061353 [TBL] [Abstract][Full Text] [Related]
11. Cross-links in carbon nanotube assembly introduced by using polyacrylonitrile as precursor. Cui Y; Zhang M ACS Appl Mater Interfaces; 2013 Aug; 5(16):8173-8. PubMed ID: 23901778 [TBL] [Abstract][Full Text] [Related]
12. Selective actuation of arrays of carbon nanotubes using magnetic resonance. Volodin A; Santini CA; De Gendt S; Vereecken PM; Van Haesendonck C ACS Nano; 2013 Jul; 7(7):5777-83. PubMed ID: 23742039 [TBL] [Abstract][Full Text] [Related]
13. Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Sato Y; Yokoyama A; Shibata K; Akimoto Y; Ogino S; Nodasaka Y; Kohgo T; Tamura K; Akasaka T; Uo M; Motomiya K; Jeyadevan B; Ishiguro M; Hatakeyama R; Watari F; Tohji K Mol Biosyst; 2005 Jul; 1(2):176-82. PubMed ID: 16880981 [TBL] [Abstract][Full Text] [Related]
14. Carbon nanotube release from polymers into a food simulant. Xia Y; Uysal Unalan I; Rubino M; Auras R Environ Pollut; 2017 Oct; 229():818-826. PubMed ID: 28779898 [TBL] [Abstract][Full Text] [Related]
15. Influence of the initial state of carbon nanotubes on their colloidal stability under natural conditions. Schwyzer I; Kaegi R; Sigg L; Magrez A; Nowack B Environ Pollut; 2011 Jun; 159(6):1641-8. PubMed ID: 21435759 [TBL] [Abstract][Full Text] [Related]
16. In situ transmission electron microscopy observations of individually selected freestanding carbon nanotubes during field emission. Kaiser M; Doytcheva M; Verheijen M; de Jonge N Ultramicroscopy; 2006; 106(10):902-8. PubMed ID: 16737778 [TBL] [Abstract][Full Text] [Related]
17. Diameter-selective dispersion of carbon nanotubes by β-lactoglobulin whey protein. Karchemsky F; Drug E; Mashiach-Farkash E; Fadeev L; Wolfson HJ; Gozin M; Regev O Colloids Surf B Biointerfaces; 2013 Dec; 112():16-22. PubMed ID: 23933103 [TBL] [Abstract][Full Text] [Related]
18. Colloidal stability of suspended and agglomerate structures of settled carbon nanotubes in different aqueous matrices. Schwyzer I; Kaegi R; Sigg L; Nowack B Water Res; 2013 Aug; 47(12):3910-20. PubMed ID: 23582307 [TBL] [Abstract][Full Text] [Related]
19. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications. Penza M; Rossi R; Alvisi M; Serra E Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374 [TBL] [Abstract][Full Text] [Related]