BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 24773125)

  • 1. Ductile all-cellulose nanocomposite films fabricated from core-shell structured cellulose nanofibrils.
    Larsson PA; Berglund LA; Wågberg L
    Biomacromolecules; 2014 Jun; 15(6):2218-23. PubMed ID: 24773125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Transparent and Toughened Poly(methyl methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils.
    Dong H; Sliozberg YR; Snyder JF; Steele J; Chantawansri TL; Orlicki JA; Walck SD; Reiner RS; Rudie AW
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25464-72. PubMed ID: 26513136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-performance and moisture-stable cellulose-starch nanocomposites based on bioinspired core-shell nanofibers.
    Prakobna K; Galland S; Berglund LA
    Biomacromolecules; 2015 Mar; 16(3):904-12. PubMed ID: 25650787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils.
    Benítez AJ; Torres-Rendon J; Poutanen M; Walther A
    Biomacromolecules; 2013 Dec; 14(12):4497-506. PubMed ID: 24245557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reinforcement of all-cellulose nanocomposite films using native cellulose nanofibrils.
    Zhao J; He X; Wang Y; Zhang W; Zhang X; Zhang X; Deng Y; Lu C
    Carbohydr Polym; 2014 Apr; 104():143-50. PubMed ID: 24607171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties.
    Peng XW; Ren JL; Zhong LX; Sun RC
    Biomacromolecules; 2011 Sep; 12(9):3321-9. PubMed ID: 21815695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing.
    Ghanbari A; Tabarsa T; Ashori A; Shakeri A; Mashkour M
    Int J Biol Macromol; 2018 Jun; 112():442-447. PubMed ID: 29410268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose nanofibrils reinforced xylan-alginate composites: Mechanical, thermal and barrier properties.
    Naidu DS; John MJ
    Int J Biol Macromol; 2021 May; 179():448-456. PubMed ID: 33711367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Starch-based nanocomposites with cellulose nanofibers obtained from chemical and mechanical treatments.
    Tibolla H; Czaikoski A; Pelissari FM; Menegalli FC; Cunha RL
    Int J Biol Macromol; 2020 Oct; 161():132-146. PubMed ID: 32522543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect and mechanism of cellulose nanofibrils on the active functions of biopolymer-based nanocomposite films.
    Yu Z; Alsammarraie FK; Nayigiziki FX; Wang W; Vardhanabhuti B; Mustapha A; Lin M
    Food Res Int; 2017 Sep; 99(Pt 1):166-172. PubMed ID: 28784473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of starch-based composite films reinforced by cellulose nanofibers.
    Fazeli M; Keley M; Biazar E
    Int J Biol Macromol; 2018 Sep; 116():272-280. PubMed ID: 29729338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers.
    Babaee M; Jonoobi M; Hamzeh Y; Ashori A
    Carbohydr Polym; 2015 Nov; 132():1-8. PubMed ID: 26256317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water-resistant hybrid cellulose nanofibril films prepared by charge reversal on gibbsite nanoclays.
    Sethi J; Wågberg L; Larsson PA
    Carbohydr Polym; 2022 Nov; 295():119867. PubMed ID: 35989010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Holocellulose Nanofibers of High Molar Mass and Small Diameter for High-Strength Nanopaper.
    Galland S; Berthold F; Prakobna K; Berglund LA
    Biomacromolecules; 2015 Aug; 16(8):2427-35. PubMed ID: 26151837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermomechanical and morphological properties of nanocomposite films from wheat gluten matrix and cellulose nanofibrils.
    Rafieian F; Shahedi M; Keramat J; Simonsen J
    J Food Sci; 2014 Jan; 79(1):N100-7. PubMed ID: 24460772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Lactic Acid Surface Modification of Cellulose Nanofibrils on the Properties of Cellulose Nanofibril Films and Cellulose Nanofibril-Poly(lactic acid) Composites.
    Lafia-Araga RA; Sabo R; Nabinejad O; Matuana L; Stark N
    Biomolecules; 2021 Sep; 11(9):. PubMed ID: 34572560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Banana starch nanocomposite with cellulose nanofibers isolated from banana peel by enzymatic treatment: In vitro cytotoxicity assessment.
    Tibolla H; Pelissari FM; Martins JT; Lanzoni EM; Vicente AA; Menegalli FC; Cunha RL
    Carbohydr Polym; 2019 Mar; 207():169-179. PubMed ID: 30599996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocomposite edible films from mango puree reinforced with cellulose nanofibers.
    Azeredo HM; Mattoso LH; Wood D; Williams TG; Avena-Bustillos RJ; McHugh TH
    J Food Sci; 2009 Jun; 74(5):N31-5. PubMed ID: 19646052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of all-cellulose nanocomposites from corn stalk.
    Bian H; Tu P; Chen JY
    J Sci Food Agric; 2020 Sep; 100(12):4390-4399. PubMed ID: 32388869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pore size determination of TEMPO-oxidized cellulose nanofibril films by positron annihilation lifetime spectroscopy.
    Fukuzumi H; Saito T; Iwamoto S; Kumamoto Y; Ohdaira T; Suzuki R; Isogai A
    Biomacromolecules; 2011 Nov; 12(11):4057-62. PubMed ID: 21995723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.