These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 24773294)
1. Red wine and oenological extracts display antimicrobial effects in an oral bacteria biofilm model. Muñoz-González I; Thurnheer T; Bartolomé B; Moreno-Arribas MV J Agric Food Chem; 2014 May; 62(20):4731-7. PubMed ID: 24773294 [TBL] [Abstract][Full Text] [Related]
2. Antimicrobial activity of red wine and oenological extracts against periodontal pathogens in a validated oral biofilm model. Sánchez MC; Ribeiro-Vidal H; Esteban-Fernández A; Bartolomé B; Figuero E; Moreno-Arribas MV; Sanz M; Herrera D BMC Complement Altern Med; 2019 Jun; 19(1):145. PubMed ID: 31226983 [TBL] [Abstract][Full Text] [Related]
3. The effects of histatin-derived basic antimicrobial peptides on oral biofilms. Helmerhorst EJ; Hodgson R; van 't Hof W; Veerman EC; Allison C; Nieuw Amerongen AV J Dent Res; 1999 Jun; 78(6):1245-50. PubMed ID: 10371248 [TBL] [Abstract][Full Text] [Related]
4. Colonisation of gingival epithelia by subgingival biofilms in vitro: role of "red complex" bacteria. Thurnheer T; Belibasakis GN; Bostanci N Arch Oral Biol; 2014 Sep; 59(9):977-86. PubMed ID: 24949828 [TBL] [Abstract][Full Text] [Related]
5. Thurnheer T; Karygianni L; Flury M; Belibasakis GN Front Microbiol; 2019; 10():1716. PubMed ID: 31417514 [TBL] [Abstract][Full Text] [Related]
6. Effects of glucose and fluoride on competition and metabolism within in vitro dental bacterial communities and biofilms. Bradshaw DJ; Marsh PD; Hodgson RJ; Visser JM Caries Res; 2002; 36(2):81-6. PubMed ID: 12037363 [TBL] [Abstract][Full Text] [Related]
7. Quantitative real-time PCR combined with propidium monoazide for the selective quantification of viable periodontal pathogens in an in vitro subgingival biofilm model. Sánchez MC; Marín MJ; Figuero E; Llama-Palacios A; León R; Blanc V; Herrera D; Sanz M J Periodontal Res; 2014 Feb; 49(1):20-8. PubMed ID: 23581569 [TBL] [Abstract][Full Text] [Related]
8. Validation of an in vitro biofilm model of supragingival plaque. Guggenheim B; Giertsen E; Schüpbach P; Shapiro S J Dent Res; 2001 Jan; 80(1):363-70. PubMed ID: 11269730 [TBL] [Abstract][Full Text] [Related]
9. Structure, viability and bacterial kinetics of an in vitro biofilm model using six bacteria from the subgingival microbiota. Sánchez MC; Llama-Palacios A; Blanc V; León R; Herrera D; Sanz M J Periodontal Res; 2011 Apr; 46(2):252-60. PubMed ID: 21261622 [TBL] [Abstract][Full Text] [Related]
10. Streptococcus oralis maintains homeostasis in oral biofilms by antagonizing the cariogenic pathogen Streptococcus mutans. Thurnheer T; Belibasakis GN Mol Oral Microbiol; 2018 Jun; 33(3):234-239. PubMed ID: 29327482 [TBL] [Abstract][Full Text] [Related]
11. Efficacy of gasiform ozone and photodynamic therapy on a multispecies oral biofilm in vitro. Müller P; Guggenheim B; Schmidlin PR Eur J Oral Sci; 2007 Feb; 115(1):77-80. PubMed ID: 17305720 [TBL] [Abstract][Full Text] [Related]
12. Antibacterial Efficacy of a Propolis Toothpaste and Mouthrinse Against a Supragingival Multispecies Biofilm. Vanni R; Waldner-Tomic NM; Belibasakis GN; Attin T; Schmidlin PR; Thurnheer T Oral Health Prev Dent; 2015; 13(6):531-5. PubMed ID: 26106649 [TBL] [Abstract][Full Text] [Related]
13. The effect of herbal extracts in an experimental mouthrinse on established plaque and gingivitis. Van der Weijden GA; Timmer CJ; Timmerman MF; Reijerse E; Mantel MS; van der Velden U J Clin Periodontol; 1998 May; 25(5):399-403. PubMed ID: 9650877 [TBL] [Abstract][Full Text] [Related]
14. Effects of Streptococcus mutans gtfC deficiency on mixed oral biofilms in vitro. Thurnheer T; van der Ploeg JR; Giertsen E; Guggenheim B Caries Res; 2006; 40(2):163-71. PubMed ID: 16508276 [TBL] [Abstract][Full Text] [Related]
15. The in vivo dynamics of Streptococcus spp., Actinomyces naeslundii, Fusobacterium nucleatum and Veillonella spp. in dental plaque biofilm as analysed by five-colour multiplex fluorescence in situ hybridization. Al-Ahmad A; Wunder A; Auschill TM; Follo M; Braun G; Hellwig E; Arweiler NB J Med Microbiol; 2007 May; 56(Pt 5):681-687. PubMed ID: 17446294 [TBL] [Abstract][Full Text] [Related]
16. In vitro anti-bacterial and anti-adherence effects of natural polyphenolic compounds on oral bacteria. Furiga A; Lonvaud-Funel A; Dorignac G; Badet C J Appl Microbiol; 2008 Nov; 105(5):1470-6. PubMed ID: 18795979 [TBL] [Abstract][Full Text] [Related]
17. Characterisation of a sucrose-independent in vitro biofilm model of supragingival plaque. Tsutsumi K; Maruyama M; Uchiyama A; Shibasaki K Oral Dis; 2018 Apr; 24(3):465-475. PubMed ID: 28898513 [TBL] [Abstract][Full Text] [Related]
18. Chemical characterization of red wine grape (Vitis vinifera and Vitis interspecific hybrids) and pomace phenolic extracts and their biological activity against Streptococcus mutans. Thimothe J; Bonsi IA; Padilla-Zakour OI; Koo H J Agric Food Chem; 2007 Dec; 55(25):10200-7. PubMed ID: 17999462 [TBL] [Abstract][Full Text] [Related]
20. Central role of the early colonizer Veillonella sp. in establishing multispecies biofilm communities with initial, middle, and late colonizers of enamel. Periasamy S; Kolenbrander PE J Bacteriol; 2010 Jun; 192(12):2965-72. PubMed ID: 20154130 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]