These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 24773393)

  • 1. High-intensity interval exercise induces 24-h energy expenditure similar to traditional endurance exercise despite reduced time commitment.
    Skelly LE; Andrews PC; Gillen JB; Martin BJ; Percival ME; Gibala MJ
    Appl Physiol Nutr Metab; 2014 Jul; 39(7):845-8. PubMed ID: 24773393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological and performance adaptations to high-intensity interval training.
    Gibala MJ; Jones AM
    Nestle Nutr Inst Workshop Ser; 2013; 76():51-60. PubMed ID: 23899754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in energy expenditure between high- and low-volume training.
    Drenowatz C; Eisenmann JC; Pivarnik JM; Pfeiffer KA; Carlson JJ
    Eur J Sport Sci; 2013; 13(4):422-30. PubMed ID: 23834549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations.
    Cochran AJ; Percival ME; Tricarico S; Little JP; Cermak N; Gillen JB; Tarnopolsky MA; Gibala MJ
    Exp Physiol; 2014 May; 99(5):782-91. PubMed ID: 24532598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Similar metabolic response to lower- versus upper-body interval exercise or endurance exercise.
    Francois ME; Graham MJ; Parr EB; Rehrer NJ; Lucas SJE; Stavrianeas S; Cotter JD
    Metabolism; 2017 Mar; 68():1-10. PubMed ID: 28183441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle.
    Perry CG; Heigenhauser GJ; Bonen A; Spriet LL
    Appl Physiol Nutr Metab; 2008 Dec; 33(6):1112-23. PubMed ID: 19088769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of high-intensity interval exercise versus continuous moderate-intensity exercise on postprandial glycemic control assessed by continuous glucose monitoring in obese adults.
    Little JP; Jung ME; Wright AE; Wright W; Manders RJ
    Appl Physiol Nutr Metab; 2014 Jul; 39(7):835-41. PubMed ID: 24773254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use aerobic energy expenditure instead of oxygen uptake to quantify exercise intensity and predict endurance performance.
    Beck ON; Kipp S; Byrnes WC; Kram R
    J Appl Physiol (1985); 2018 Aug; 125(2):672-674. PubMed ID: 29446709
    [No Abstract]   [Full Text] [Related]  

  • 9. Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise.
    Swain DP; Franklin BA
    Am J Cardiol; 2006 Jan; 97(1):141-7. PubMed ID: 16377300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abdominal fat reducing outcome of exercise training: fat burning or hydrocarbon source redistribution?
    Kuo CH; Harris MB
    Can J Physiol Pharmacol; 2016 Jul; 94(7):695-8. PubMed ID: 27152424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute effects of interval versus continuous endurance training on pulse wave reflection in healthy young men.
    Hanssen H; Nussbaumer M; Moor C; Cordes M; Schindler C; Schmidt-Trucksäss A
    Atherosclerosis; 2015 Feb; 238(2):399-406. PubMed ID: 25558034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerobic power and insulin action improve in response to endurance exercise training in healthy 77-87 yr olds.
    Evans EM; Racette SB; Peterson LR; Villareal DT; Greiwe JS; Holloszy JO
    J Appl Physiol (1985); 2005 Jan; 98(1):40-5. PubMed ID: 15591302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversed drift in heart rate but increased oxygen uptake at fixed work rate during 24 h ultra-endurance exercise.
    Mattsson CM; Enqvist JK; Brink-Elfegoun T; Johansson PH; Bakkman L; Ekblom B
    Scand J Med Sci Sports; 2010 Apr; 20(2):298-304. PubMed ID: 19486489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resolving the determinants of high-intensity exercise performance.
    Poole DC
    Exp Physiol; 2009 Feb; 94(2):197-8. PubMed ID: 19144747
    [No Abstract]   [Full Text] [Related]  

  • 15. Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in humans.
    Forbes SC; Slade JM; Meyer RA
    Appl Physiol Nutr Metab; 2008 Dec; 33(6):1124-31. PubMed ID: 19088770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of fin-swim training for SCUBA divers.
    Wylegala J; Schafer-Owczarzak M; Pendergast DR
    Undersea Hyperb Med; 2007; 34(6):431-8. PubMed ID: 18251440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing energy expenditure in male endurance athletes: validity of the SenseWear Armband.
    Koehler K; Braun H; de Marées M; Fusch G; Fusch C; Schaenzer W
    Med Sci Sports Exerc; 2011 Jul; 43(7):1328-33. PubMed ID: 21131865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whole body metabolic effects of prolonged endurance training in combination with erythropoietin treatment in humans: a randomized placebo controlled trial.
    Christensen B; Nellemann B; Larsen MS; Thams L; Sieljacks P; Vestergaard PF; Bibby BM; Vissing K; Stødkilde-Jørgensen H; Pedersen SB; Møller N; Nielsen S; Jessen N; Jørgensen JO
    Am J Physiol Endocrinol Metab; 2013 Oct; 305(7):E879-89. PubMed ID: 23921143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Psychophysiological response and energy balance during a 14-h ultraendurance mountain running event.
    Clemente-Suárez VJ
    Appl Physiol Nutr Metab; 2015 Mar; 40(3):269-73. PubMed ID: 25693897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of exercise intensity on body fatness and skeletal muscle metabolism.
    Tremblay A; Simoneau JA; Bouchard C
    Metabolism; 1994 Jul; 43(7):814-8. PubMed ID: 8028502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.