BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 24773454)

  • 1. Methods for quantifying Staphylococcus aureus in indoor air.
    Chang CW; Wang LJ
    Indoor Air; 2015 Feb; 25(1):59-67. PubMed ID: 24773454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of culture media and sampling methods on Staphylococcus aureus aerosols.
    Chang CW; Wang LJ
    Indoor Air; 2015 Oct; 25(5):488-98. PubMed ID: 25250674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methodologies for quantifying culturable, viable, and total Legionella pneumophila in indoor air.
    Chang CW; Chou FC
    Indoor Air; 2011 Aug; 21(4):291-9. PubMed ID: 21198889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collection efficiency of liquid-based samplers for fungi in indoor air.
    Chang CW; Ting YT; Horng YJ
    Indoor Air; 2019 May; 29(3):380-389. PubMed ID: 30614570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passive airborne dust sampling with the electrostatic dustfall collector: optimization of storage and extraction procedures for endotoxin and glucan measurement.
    Noss I; Doekes G; Sander I; Heederik DJ; Thorne PS; Wouters IM
    Ann Occup Hyg; 2010 Aug; 54(6):651-8. PubMed ID: 20354054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a high-volume portable bioaerosol sampler in laboratory and field environments.
    An HR; Mainelis G; Yao M
    Indoor Air; 2004 Dec; 14(6):385-93. PubMed ID: 15500631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular comparison of the sampling efficiency of four types of airborne bacterial samplers.
    Li K
    Sci Total Environ; 2011 Nov; 409(24):5493-8. PubMed ID: 21968260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Background culturable bacteria aerosol in two large public buildings using HVAC filters as long term, passive, high-volume air samplers.
    Stanley NJ; Kuehn TH; Kim SW; Raynor PC; Anantharaman S; Ramakrishnan MA; Goyal SM
    J Environ Monit; 2008 Apr; 10(4):474-81. PubMed ID: 18385868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of high-volume air sampling equipment for viral aerosol sampling during emergency response.
    Cooper C; Slagley J; Lohaus J; Escamilla E; Bliss C; Semler D; Felker D; Smith D; Ott D
    J Emerg Manag; 2014; 12(2):161-70. PubMed ID: 24828912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prevalence of Staphylococcus aureus and Pseudomonas aeruginosa in indoor air flora of a district hospital, Mandya, Karnataka.
    Nandalal P; Somashekar RK
    J Environ Biol; 2007 Apr; 28(2):197-200. PubMed ID: 17915750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A field comparison of four samplers for enumerating fungal aerosols I. Sampling characteristics.
    Lee KS; Bartlett KH; Brauer M; Stephens GM; Black WA; Teschke K
    Indoor Air; 2004 Oct; 14(5):360-6. PubMed ID: 15330796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a new sampling medium for bioaerosols.
    Zhai JH; Chen ML; Xu XZ; Sun ZH; Zhou Y; Che FX; Yang RF
    Biomed Environ Sci; 2005 Apr; 18(2):82-6. PubMed ID: 16001826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring airborne fungal spores in an experimental indoor environment to evaluate sampling methods and the effects of human activity on air sampling.
    Buttner MP; Stetzenbach LD
    Appl Environ Microbiol; 1993 Jan; 59(1):219-26. PubMed ID: 8439150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of molecular and total ATP-based analytical methods with culture for the analysis of bioaerosols.
    Kim SY; Kim ZY; Lee S; Ko G
    Sci Total Environ; 2011 Apr; 409(9):1732-7. PubMed ID: 21329966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of flow cytometry for the assessment of preservation and recovery efficiency of bioaerosol samplers spiked with Pantoea agglomerans.
    Rule AM; Kesavan J; Schwab KJ; Buckley TJ
    Environ Sci Technol; 2007 Apr; 41(7):2467-72. PubMed ID: 17438801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of bioaerosol sampling techniques for the detection of Chlamydophila psittaci in contaminated air.
    Van Droogenbroeck C; Van Risseghem M; Braeckman L; Vanrompay D
    Vet Microbiol; 2009 Mar; 135(1-2):31-7. PubMed ID: 18963601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chamber evaluation of a personal, bioaerosol cyclone sampler.
    Macher J; Chen B; Rao C
    J Occup Environ Hyg; 2008 Nov; 5(11):702-12. PubMed ID: 18720289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.
    Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ;
    Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Food-associated bacteria in bioaerosols of delicatessens.
    Lues JF; Theron MM; van Tonder I
    Int J Environ Health Res; 2006 Dec; 16(6):419-26. PubMed ID: 17164168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.