These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 24773454)

  • 1. Methods for quantifying Staphylococcus aureus in indoor air.
    Chang CW; Wang LJ
    Indoor Air; 2015 Feb; 25(1):59-67. PubMed ID: 24773454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of culture media and sampling methods on Staphylococcus aureus aerosols.
    Chang CW; Wang LJ
    Indoor Air; 2015 Oct; 25(5):488-98. PubMed ID: 25250674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methodologies for quantifying culturable, viable, and total Legionella pneumophila in indoor air.
    Chang CW; Chou FC
    Indoor Air; 2011 Aug; 21(4):291-9. PubMed ID: 21198889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collection efficiency of liquid-based samplers for fungi in indoor air.
    Chang CW; Ting YT; Horng YJ
    Indoor Air; 2019 May; 29(3):380-389. PubMed ID: 30614570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passive airborne dust sampling with the electrostatic dustfall collector: optimization of storage and extraction procedures for endotoxin and glucan measurement.
    Noss I; Doekes G; Sander I; Heederik DJ; Thorne PS; Wouters IM
    Ann Occup Hyg; 2010 Aug; 54(6):651-8. PubMed ID: 20354054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a high-volume portable bioaerosol sampler in laboratory and field environments.
    An HR; Mainelis G; Yao M
    Indoor Air; 2004 Dec; 14(6):385-93. PubMed ID: 15500631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular comparison of the sampling efficiency of four types of airborne bacterial samplers.
    Li K
    Sci Total Environ; 2011 Nov; 409(24):5493-8. PubMed ID: 21968260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Background culturable bacteria aerosol in two large public buildings using HVAC filters as long term, passive, high-volume air samplers.
    Stanley NJ; Kuehn TH; Kim SW; Raynor PC; Anantharaman S; Ramakrishnan MA; Goyal SM
    J Environ Monit; 2008 Apr; 10(4):474-81. PubMed ID: 18385868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of high-volume air sampling equipment for viral aerosol sampling during emergency response.
    Cooper C; Slagley J; Lohaus J; Escamilla E; Bliss C; Semler D; Felker D; Smith D; Ott D
    J Emerg Manag; 2014; 12(2):161-70. PubMed ID: 24828912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prevalence of Staphylococcus aureus and Pseudomonas aeruginosa in indoor air flora of a district hospital, Mandya, Karnataka.
    Nandalal P; Somashekar RK
    J Environ Biol; 2007 Apr; 28(2):197-200. PubMed ID: 17915750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A field comparison of four samplers for enumerating fungal aerosols I. Sampling characteristics.
    Lee KS; Bartlett KH; Brauer M; Stephens GM; Black WA; Teschke K
    Indoor Air; 2004 Oct; 14(5):360-6. PubMed ID: 15330796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a new sampling medium for bioaerosols.
    Zhai JH; Chen ML; Xu XZ; Sun ZH; Zhou Y; Che FX; Yang RF
    Biomed Environ Sci; 2005 Apr; 18(2):82-6. PubMed ID: 16001826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring airborne fungal spores in an experimental indoor environment to evaluate sampling methods and the effects of human activity on air sampling.
    Buttner MP; Stetzenbach LD
    Appl Environ Microbiol; 1993 Jan; 59(1):219-26. PubMed ID: 8439150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of molecular and total ATP-based analytical methods with culture for the analysis of bioaerosols.
    Kim SY; Kim ZY; Lee S; Ko G
    Sci Total Environ; 2011 Apr; 409(9):1732-7. PubMed ID: 21329966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of flow cytometry for the assessment of preservation and recovery efficiency of bioaerosol samplers spiked with Pantoea agglomerans.
    Rule AM; Kesavan J; Schwab KJ; Buckley TJ
    Environ Sci Technol; 2007 Apr; 41(7):2467-72. PubMed ID: 17438801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of bioaerosol sampling techniques for the detection of Chlamydophila psittaci in contaminated air.
    Van Droogenbroeck C; Van Risseghem M; Braeckman L; Vanrompay D
    Vet Microbiol; 2009 Mar; 135(1-2):31-7. PubMed ID: 18963601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chamber evaluation of a personal, bioaerosol cyclone sampler.
    Macher J; Chen B; Rao C
    J Occup Environ Hyg; 2008 Nov; 5(11):702-12. PubMed ID: 18720289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.
    Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ;
    Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Food-associated bacteria in bioaerosols of delicatessens.
    Lues JF; Theron MM; van Tonder I
    Int J Environ Health Res; 2006 Dec; 16(6):419-26. PubMed ID: 17164168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.