These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 24773491)

  • 1. Quantitative structure-sorption relationships of pesticides used in the sugarcane industry in the northern coastal area of Paraíba State, Brazil.
    da S Soares GC; de M e Silva L; de A Farias CH; Scotti L; Scotti MT
    Altern Lab Anim; 2014 Mar; 42(1):81-90. PubMed ID: 24773491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QSPR modeling of soil sorption coefficients (K(OC)) of pesticides using SPA-ANN and SPA-MLR.
    Goudarzi N; Goodarzi M; Araujo MC; Galvão RK
    J Agric Food Chem; 2009 Aug; 57(15):7153-8. PubMed ID: 19722589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QSPR studies on water solubility, octanol-water partition coefficient and vapour pressure of pesticides.
    Duchowicz PR
    SAR QSAR Environ Res; 2020 Feb; 31(2):135-148. PubMed ID: 31842624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An alternative approach for the use of water solubility of nonionic pesticides in the modeling of the soil sorption coefficients.
    dos Reis RR; Sampaio SC; de Melo EB
    Water Res; 2014 Apr; 53():191-9. PubMed ID: 24525068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformation-Independent QSPR Approach for the Soil Sorption Coefficient of Heterogeneous Compounds.
    Aranda JF; Garro Martinez JC; Castro EA; Duchowicz PR
    Int J Mol Sci; 2016 Aug; 17(8):. PubMed ID: 27527144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling and prediction of soil sorption coefficients of non-ionic organic pesticides by molecular descriptors.
    Gramatica P; Corradi M; Consonni V
    Chemosphere; 2000 Sep; 41(5):763-77. PubMed ID: 10834380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformation-independent quantitative structure-property relationships study on water solubility of pesticides.
    Fioressi SE; Bacelo DE; Rojas C; Aranda JF; Duchowicz PR
    Ecotoxicol Environ Saf; 2019 Apr; 171():47-53. PubMed ID: 30594756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorption and aging of corn and soybean pesticides in tropical soils of Brazil.
    Laabs V; Amelung W
    J Agric Food Chem; 2005 Sep; 53(18):7184-92. PubMed ID: 16131128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A topological substructural molecular design to predict soil sorption coefficients for pesticides.
    González MP; Helguera AM; Collado IG
    Mol Divers; 2006 May; 10(2):109-18. PubMed ID: 16710808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inclusion of molecular descriptors in predictive models improves pesticide soil-air partitioning estimates.
    Islam MN; Huang L; Siciliano SD
    Chemosphere; 2020 Jun; 248():126031. PubMed ID: 32032877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple approach to the prediction of soil sorption of organophosphorus pesticides.
    Muhire J; Li SS; Yin B; Mi JY; Zhai HL
    J Environ Sci Health B; 2021; 56(6):606-612. PubMed ID: 34162318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of Soil Adsorption Coefficient in Pesticides Using Physicochemical Properties and Molecular Descriptors by Machine Learning Models.
    Kobayashi Y; Uchida T; Yoshida K
    Environ Toxicol Chem; 2020 Jul; 39(7):1451-1459. PubMed ID: 32274829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of quantitative structure-property relationship analysis to estimate the vapor pressure of pesticides.
    Goodarzi M; Coelho Ldos S; Honarparvar B; Ortiz EV; Duchowicz PR
    Ecotoxicol Environ Saf; 2016 Jun; 128():52-60. PubMed ID: 26890190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of landuse on soil organic carbon chemistry and sorption of pesticides and metabolites.
    Oliver DP; Baldock JA; Kookana RS; Grocke S
    Chemosphere; 2005 Jul; 60(4):531-41. PubMed ID: 15950045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QSPR study on soil sorption coefficient for persistent organic pollutants.
    Lu C; Wang Y; Yin C; Guo W; Hu X
    Chemosphere; 2006 May; 63(8):1384-91. PubMed ID: 16307785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation and sorption of atrazine, hexazinone and procymidone in coastal sand aquifer media.
    Pang L; Close M; Flintoft M
    Pest Manag Sci; 2005 Feb; 61(2):133-43. PubMed ID: 15619714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soil column leaching of pesticides.
    Katagi T
    Rev Environ Contam Toxicol; 2013; 221():1-105. PubMed ID: 23090630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linear and non-linear relationships between soil sorption and hydrophobicity.
    Wen Y; Su LM; Qin WC; He J; Fu L; Zhang XJ; Zhao YH
    SAR QSAR Environ Res; 2012 Jan; 23(1-2):111-23. PubMed ID: 22150068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QSPR models for prediction of the soil sorption coefficient (log KOC) values of 209 polychlorinated trans-azobenzenes (PCt-ABs).
    Wilczyńska-Piliszek AJ; Piliszek S; Falandysz J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(3):441-9. PubMed ID: 22320697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular properties affecting the adsorption coefficient of pesticides from various chemical families.
    Langeron J; Blondel A; Sayen S; Hénon E; Couderchet M; Guillon E
    Environ Sci Pollut Res Int; 2014; 21(16):9727-41. PubMed ID: 24801285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.