These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 24776540)
1. apoE3[K146N/R147W] acts as a dominant negative apoE form that prevents remnant clearance and inhibits the biogenesis of HDL. Fotakis P; Vezeridis A; Dafnis I; Chroni A; Kardassis D; Zannis VI J Lipid Res; 2014 Jul; 55(7):1310-23. PubMed ID: 24776540 [TBL] [Abstract][Full Text] [Related]
2. Residues Leu261, Trp264, and Phe265 account for apolipoprotein E-induced dyslipidemia and affect the formation of apolipoprotein E-containing high-density lipoprotein. Drosatos K; Kypreos KE; Zannis VI Biochemistry; 2007 Aug; 46(33):9645-53. PubMed ID: 17655277 [TBL] [Abstract][Full Text] [Related]
3. Pathway of biogenesis of apolipoprotein E-containing HDL in vivo with the participation of ABCA1 and LCAT. Kypreos KE; Zannis VI Biochem J; 2007 Apr; 403(2):359-67. PubMed ID: 17206937 [TBL] [Abstract][Full Text] [Related]
4. Substitutions of glutamate 110 and 111 in the middle helix 4 of human apolipoprotein A-I (apoA-I) by alanine affect the structure and in vitro functions of apoA-I and induce severe hypertriglyceridemia in apoA-I-deficient mice. Chroni A; Kan HY; Kypreos KE; Gorshkova IN; Shkodrani A; Zannis VI Biochemistry; 2004 Aug; 43(32):10442-57. PubMed ID: 15301543 [TBL] [Abstract][Full Text] [Related]
5. Generation of a recombinant apolipoprotein E variant with improved biological functions: hydrophobic residues (LEU-261, TRP-264, PHE-265, LEU-268, VAL-269) of apoE can account for the apoE-induced hypertriglyceridemia. Kypreos KE; van Dijk KW; Havekes LM; Zannis VI J Biol Chem; 2005 Feb; 280(8):6276-84. PubMed ID: 15576362 [TBL] [Abstract][Full Text] [Related]
6. Molecular etiology of a dominant form of type III hyperlipoproteinemia caused by R142C substitution in apoE4. Vezeridis AM; Drosatos K; Zannis VI J Lipid Res; 2011 Jan; 52(1):45-56. PubMed ID: 20861163 [TBL] [Abstract][Full Text] [Related]
7. Discrete roles of apoA-I and apoE in the biogenesis of HDL species: lessons learned from gene transfer studies in different mouse models. Zannis VI; Koukos G; Drosatos K; Vezeridis A; Zanni EE; Kypreos KE; Chroni A Ann Med; 2008; 40 Suppl 1():14-28. PubMed ID: 18246469 [TBL] [Abstract][Full Text] [Related]
8. Molecular mechanisms of type III hyperlipoproteinemia: The contribution of the carboxy-terminal domain of ApoE can account for the dyslipidemia that is associated with the E2/E2 phenotype. Kypreos KE; Li X; van Dijk KW; Havekes LM; Zannis VI Biochemistry; 2003 Aug; 42(33):9841-53. PubMed ID: 12924933 [TBL] [Abstract][Full Text] [Related]
9. Hyperlipidemia of ApoE2(Arg(158)-Cys) and ApoE3-Leiden transgenic mice is modulated predominantly by LDL receptor expression. van Dijk KW; van Vlijmen BJ; de Winther MP; van 't Hof B; van der Zee A; van der Boom H; Havekes LM; Hofker MH Arterioscler Thromb Vasc Biol; 1999 Dec; 19(12):2945-51. PubMed ID: 10591674 [TBL] [Abstract][Full Text] [Related]
10. Naturally occurring and bioengineered apoA-I mutations that inhibit the conversion of discoidal to spherical HDL: the abnormal HDL phenotypes can be corrected by treatment with LCAT. Koukos G; Chroni A; Duka A; Kardassis D; Zannis VI Biochem J; 2007 Aug; 406(1):167-74. PubMed ID: 17506726 [TBL] [Abstract][Full Text] [Related]
11. Regulation of reconstituted high density lipoprotein structure and remodeling by apolipoprotein E. Rye KA; Bright R; Psaltis M; Barter PJ J Lipid Res; 2006 May; 47(5):1025-36. PubMed ID: 16452453 [TBL] [Abstract][Full Text] [Related]
12. ABCA1 promotes the de novo biogenesis of apolipoprotein CIII-containing HDL particles in vivo and modulates the severity of apolipoprotein CIII-induced hypertriglyceridemia. Kypreos KE Biochemistry; 2008 Sep; 47(39):10491-502. PubMed ID: 18767813 [TBL] [Abstract][Full Text] [Related]
13. The amino-terminal 1-185 domain of apoE promotes the clearance of lipoprotein remnants in vivo. The carboxy-terminal domain is required for induction of hyperlipidemia in normal and apoE-deficient mice. Kypreos KE; Morani P; van Dijk KW; Havekes LM; Zannis VI Biochemistry; 2001 May; 40(20):6027-35. PubMed ID: 11352738 [TBL] [Abstract][Full Text] [Related]
14. Probing the pathways of chylomicron and HDL metabolism using adenovirus-mediated gene transfer. Zannis VI; Chroni A; Kypreos KE; Kan HY; Cesar TB; Zanni EE; Kardassis D Curr Opin Lipidol; 2004 Apr; 15(2):151-66. PubMed ID: 15017358 [TBL] [Abstract][Full Text] [Related]
15. Domains of apoE4 required for the biogenesis of apoE-containing HDL. Vezeridis AM; Chroni A; Zannis VI Ann Med; 2011 Jun; 43(4):302-11. PubMed ID: 21604997 [TBL] [Abstract][Full Text] [Related]
16. The Effect of Natural LCAT Mutations on the Biogenesis of HDL. Fotakis P; Kuivenhoven JA; Dafnis E; Kardassis D; Zannis VI Biochemistry; 2015 Jun; 54(21):3348-59. PubMed ID: 25948084 [TBL] [Abstract][Full Text] [Related]
17. Apolipoprotein E2 (Lys146-->Gln) causes hypertriglyceridemia due to an apolipoprotein E variant-specific inhibition of lipolysis of very low density lipoproteins-triglycerides. de Beer F; van Dijk KW; Jong MC; van Vark LC; van der Zee A; Hofker MH; Fallaux FJ; Hoeben RC; Smelt AH; Havekes LM Arterioscler Thromb Vasc Biol; 2000 Jul; 20(7):1800-6. PubMed ID: 10894820 [TBL] [Abstract][Full Text] [Related]
18. Molecular mechanisms responsible for the differential effects of apoE3 and apoE4 on plasma lipoprotein-cholesterol levels. Li H; Dhanasekaran P; Alexander ET; Rader DJ; Phillips MC; Lund-Katz S Arterioscler Thromb Vasc Biol; 2013 Apr; 33(4):687-93. PubMed ID: 23413428 [TBL] [Abstract][Full Text] [Related]
19. Remodeling of apolipoprotein E-containing spherical reconstituted high density lipoproteins by phospholipid transfer protein. Settasatian N; Barter PJ; Rye KA J Lipid Res; 2008 Jan; 49(1):115-26. PubMed ID: 17921435 [TBL] [Abstract][Full Text] [Related]
20. ApoA-IV promotes the biogenesis of apoA-IV-containing HDL particles with the participation of ABCA1 and LCAT. Duka A; Fotakis P; Georgiadou D; Kateifides A; Tzavlaki K; von Eckardstein L; Stratikos E; Kardassis D; Zannis VI J Lipid Res; 2013 Jan; 54(1):107-15. PubMed ID: 23132909 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]