These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Tunable nanophotonic array traps with enhanced force and stability. Ye F; Soltani M; Inman JT; Wang MD Opt Express; 2017 Apr; 25(7):7907-7918. PubMed ID: 28380908 [TBL] [Abstract][Full Text] [Related]
4. On-chip supercontinuum optical trapping and resonance excitation of microspheres. Nitkowski A; Gondarenko A; Lipson M Opt Lett; 2010 May; 35(10):1626-8. PubMed ID: 20479830 [TBL] [Abstract][Full Text] [Related]
6. Biocompatible and High Stiffness Nanophotonic Trap Array for Precise and Versatile Manipulation. Ye F; Badman RP; Inman JT; Soltani M; Killian JL; Wang MD Nano Lett; 2016 Oct; 16(10):6661-6667. PubMed ID: 27689302 [TBL] [Abstract][Full Text] [Related]
7. On-chip optical trapping of extracellular vesicles using box-shaped composite SiO Loozen GB; Caro J Opt Express; 2018 Oct; 26(21):26985-27000. PubMed ID: 30469775 [TBL] [Abstract][Full Text] [Related]
8. Resonator nanophotonic standing-wave array trap for single-molecule manipulation and measurement. Ye F; Inman JT; Hong Y; Hall PM; Wang MD Nat Commun; 2022 Jan; 13(1):77. PubMed ID: 35013276 [TBL] [Abstract][Full Text] [Related]
9. Towards biological applications of nanophotonic tweezers. Badman RP; Ye F; Wang MD Curr Opin Chem Biol; 2019 Dec; 53():158-166. PubMed ID: 31678712 [TBL] [Abstract][Full Text] [Related]
10. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation. Simmons CS; Knouf EC; Tewari M; Lin LY J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841 [TBL] [Abstract][Full Text] [Related]
11. High Trap Stiffness Microcylinders for Nanophotonic Trapping. Badman RP; Ye F; Caravan W; Wang MD ACS Appl Mater Interfaces; 2019 Jul; 11(28):25074-25080. PubMed ID: 31274286 [TBL] [Abstract][Full Text] [Related]
12. Optical tweezing using tunable optical lattices along a few-mode silicon waveguide. Pin C; Jager JB; Tardif M; Picard E; Hadji E; de Fornel F; Cluzel B Lab Chip; 2018 Jun; 18(12):1750-1757. PubMed ID: 29774333 [TBL] [Abstract][Full Text] [Related]
13. Microlens-array-enabled on-chip optical trapping and sorting. Zhao X; Sun Y; Bu J; Zhu S; Yuan XC Appl Opt; 2011 Jan; 50(3):318-22. PubMed ID: 21263729 [TBL] [Abstract][Full Text] [Related]
14. Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal. van Leest T; Caro J Lab Chip; 2013 Nov; 13(22):4358-65. PubMed ID: 24057009 [TBL] [Abstract][Full Text] [Related]
15. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers. Hong C; Yang S; Ndukaife JC Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919 [TBL] [Abstract][Full Text] [Related]
16. Bio-Molecular Applications of Recent Developments in Optical Tweezers. Choudhary D; Mossa A; Jadhav M; Cecconi C Biomolecules; 2019 Jan; 9(1):. PubMed ID: 30641944 [TBL] [Abstract][Full Text] [Related]
17. Single particle detection, manipulation and analysis with resonant optical trapping in photonic crystals. Descharmes N; Dharanipathy UP; Diao Z; Tonin M; Houdré R Lab Chip; 2013 Aug; 13(16):3268-74. PubMed ID: 23797114 [TBL] [Abstract][Full Text] [Related]
18. Electro-optofluidics: achieving dynamic control on-chip. Soltani M; Inman JT; Lipson M; Wang MD Opt Express; 2012 Sep; 20(20):22314-26. PubMed ID: 23037380 [TBL] [Abstract][Full Text] [Related]
19. Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas. Kang JH; Kim K; Ee HS; Lee YH; Yoon TY; Seo MK; Park HG Nat Commun; 2011 Dec; 2():582. PubMed ID: 22158437 [TBL] [Abstract][Full Text] [Related]
20. High throughput trapping and arrangement of biological cells using self-assembled optical tweezer. Li Z; Yang J; Liu S; Jiang X; Wang H; Hu X; Xue S; He S; Xing X Opt Express; 2018 Dec; 26(26):34665-34674. PubMed ID: 30650887 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]