These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24776656)

  • 1. Facile synthesis of V6O13 micro-flowers for Li-ion and Na-ion battery cathodes with good cycling performance.
    Fei H; Lin Y; Wei M
    J Colloid Interface Sci; 2014 Jul; 425():1-4. PubMed ID: 24776656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile synthesis of ammonium vanadium oxide nanorods for Na-ion battery cathodes.
    Fei H; Liu X; Lin Y; Wei M
    J Colloid Interface Sci; 2014 Aug; 428():73-7. PubMed ID: 24910037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile synthesis of graphite nitrate-like ammonium vanadium bronzes and their graphene composites for sodium-ion battery cathodes.
    Fei H; Li H; Li Z; Feng W; Liu X; Wei M
    Dalton Trans; 2014 Nov; 43(43):16522-7. PubMed ID: 25260028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel sodium intercalated (NH4)2V6O16 platelets: High performance cathode materials for lithium-ion battery.
    Fei H; Wu X; Li H; Wei M
    J Colloid Interface Sci; 2014 Feb; 415():85-8. PubMed ID: 24267333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced electrochemical performance of ammonium vanadium bronze through sodium cation intercalation and optimization of electrolyte.
    Fei H; Liu X; Li H; Wei M
    J Colloid Interface Sci; 2014 Mar; 418():273-6. PubMed ID: 24461845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of hierarchical three-dimensional vanadium oxide microstructures as high-capacity cathode materials for lithium-ion batteries.
    Pan A; Wu HB; Yu L; Zhu T; Lou XW
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3874-9. PubMed ID: 22809125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the Mechanism for Capacity Decay of V
    Shi X; Du J; Jones TGJ; Wang X; Liang HP
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29667-29674. PubMed ID: 30091587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Interconnected V
    Xu S; Cen D; Gao P; Tang H; Bao Z
    Nanoscale Res Lett; 2018 Mar; 13(1):65. PubMed ID: 29492695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unravelling V
    Shi W; Yin B; Yang Y; Sullivan MB; Wang J; Zhang YW; Yu ZG; Lee WSV; Xue J
    ACS Nano; 2021 Jan; 15(1):1273-1281. PubMed ID: 33389996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon black anchored vanadium oxide nanobelts and their post-sintering counterpart (V2O5 nanobelts) as high performance cathode materials for lithium ion batteries.
    Zhou X; Wu G; Wu J; Yang H; Wang J; Gao G
    Phys Chem Chem Phys; 2014 Mar; 16(9):3973-82. PubMed ID: 24445581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-step hydrothermal synthesis of submicron Li(1+x)Ni(0.5)Mn(1.5)O(4-δ) for lithium-ion battery cathodes (x = 0.02, δ = 0.12).
    Hao X; Austin MH; Bartlett BM
    Dalton Trans; 2012 Jul; 41(26):8067-76. PubMed ID: 22585259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical Mn
    Tang C; Xiong F; Yao X; Tan S; Lan B; An Q; Luo P; Mai L
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14120-14125. PubMed ID: 30908002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D V₆O₁₃ nanotextiles assembled from interconnected nanogrooves as cathode materials for high-energy lithium ion batteries.
    Ding YL; Wen Y; Wu C; van Aken PA; Maier J; Yu Y
    Nano Lett; 2015 Feb; 15(2):1388-94. PubMed ID: 25629936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-Scale Production of V
    Liang HP; Du J; Jones TG; Lawrence NS; Meredith AW
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):25674-25679. PubMed ID: 27661096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries.
    Zheng S; Chen Y; Xu Y; Yi F; Zhu Y; Liu Y; Yang J; Wang C
    ACS Nano; 2013 Dec; 7(12):10995-1003. PubMed ID: 24251957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrothermal Synthesis and Electrochemical Performance of Manganese Oxide (Na-OMS-2) Nanorods.
    Zhang Q; Xu S; Zheng H; Luo Z; Liu K; Wang W; Li G; Wang S; Liu J; Feng C
    J Nanosci Nanotechnol; 2017 Feb; 17(2):1470-475. PubMed ID: 29688521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemistry-Enabled 3D Foams for Ultrafast Battery Cathodes.
    Zhou Y; Rui X; Sun W; Xu Z; Zhou Y; Ng WJ; Yan Q; Fong E
    ACS Nano; 2015 Apr; 9(4):4628-35. PubMed ID: 25858505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and Electrochemical Performance of V
    Li F; Xu H; Liu F; Li D; Wang A; Sun D
    Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-performance lithium-ion battery and symmetric supercapacitors based on FeCo₂O₄ nanoflakes electrodes.
    Mohamed SG; Chen CJ; Chen CK; Hu SF; Liu RS
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22701-8. PubMed ID: 25437918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.