These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 24776755)

  • 1. Tests of HPGe- and scintillation-based backpack γ-radiation survey systems.
    Nilsson JM; Östlund K; Söderberg J; Mattsson S; Rääf C
    J Environ Radioact; 2014 Sep; 135():54-62. PubMed ID: 24776755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gamma-gamma coincidence performance of LaBr
    Drescher A; Yoho M; Landsberger S; Durbin M; Biegalski S; Meier D; Schwantes J
    Appl Radiat Isot; 2017 Apr; 122():116-120. PubMed ID: 28130979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design, construction and characterisation of a portable gamma-ray spectrometer for low-level natural occurring radioactive material ex-situ measurement.
    Bashir M; Newman RT; Jones P
    J Environ Radioact; 2020 Dec; 225():106415. PubMed ID: 33032005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SIMULATION OF THE RESPONSE OF A LaBr3(Ce) DETECTOR IN AN ATMOSPHERE CONTAMINATED WITH RADIONUCLIDES AFTER A NUCLEAR POWER PLANT ACCIDENT.
    Urban T; Vágner P
    Radiat Prot Dosimetry; 2019 Dec; 186(2-3):346-350. PubMed ID: 31836901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ambient dose estimation H*(10) from LaBr3(Ce) spectra.
    Camp A; Vargas A
    Radiat Prot Dosimetry; 2014 Aug; 160(4):264-8. PubMed ID: 24366248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian algorithm to estimate position and activity of an orphan gamma source utilizing multiple detectors in a mobile gamma spectrometry system.
    Bukartas A; Wallin J; Finck R; Rääf C
    PLoS One; 2021; 16(1):e0245440. PubMed ID: 33481856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of CdTe, HPGe and NaI(Tl) detectors for radioactivity measurements.
    Perez-Andujar A; Pibida L
    Appl Radiat Isot; 2004 Jan; 60(1):41-7. PubMed ID: 14687635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiation background in a LaBr3(Ce) gamma-ray scintillation detector.
    Rosson R; Lahr J; Kahn B
    Health Phys; 2011 Dec; 101(6):703-8. PubMed ID: 22048488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of the Environmental Radiation Survey Program and Its Application to In Situ Gamma-Ray Spectrometry.
    Ji YY; Jang M; Lee W
    Health Phys; 2019 Jun; 116(6):840-851. PubMed ID: 30889101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A New Approach for the Determination of Dose Rate and Radioactivity for Detected Gamma Nuclides Using an Environmental Radiation Monitor Based on an NaI(Tl) Detector.
    Ji YY; Kim CJ; Lim KS; Lee W; Chang HS; Chung KH
    Health Phys; 2017 Oct; 113(4):304-314. PubMed ID: 28796752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the PGNAA using the LaBr3 scintillation detector.
    Favalli A; Mehner HC; Ciriello V; Pedersen B
    Appl Radiat Isot; 2010; 68(4-5):901-4. PubMed ID: 19884018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IN-SITU GAMMA-RAY SPECTROMETRY FOR RADIOACTIVITY ANALYSIS OF SOIL USING NaI(Tl) AND LaBr3(Ce) DETECTORS.
    Lee JH; Byun JI
    Radiat Prot Dosimetry; 2019 Dec; 187(3):300-309. PubMed ID: 31268526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulation of gamma-ray spectra from natural radionuclides recorded by a NaI detector in the marine environment.
    Vlastou R; Ntziou IT; Kokkoris M; Papadopoulos CT; Tsabaris C
    Appl Radiat Isot; 2006 Jan; 64(1):116-23. PubMed ID: 16150599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intercomparison NaI(Tl) and HPGe spectrometry to studies of natural radioactivity on geological samples.
    Hung NQ; Chuong HD; Vuong LQ; Thanh TT; Tao CV
    J Environ Radioact; 2016 Nov; 164():197-201. PubMed ID: 27500857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Testing of an automatic outdoor gamma ambient dose-rate surveillance system in Tokyo and its calibration using measured deposition after the Fukushima nuclear accident.
    Zhang W; Korpach E; Berg R; Ungar K
    J Environ Radioact; 2013 Nov; 125():93-8. PubMed ID: 23317566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of radiation survey meters in X- and gamma-radiation fields.
    Ceklic S; Arandjic D; Zivanovic M; Ciraj-Bjelac O; Lazarevic D
    Radiat Prot Dosimetry; 2014 Nov; 162(1-2):139-43. PubMed ID: 25063785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved neutron detection by gamma-ray spectroscopy.
    Alfassi ZB; Zlatin T; Manor O; Dubinsky S; German U
    Radiat Prot Dosimetry; 2004; 110(1-4):207-11. PubMed ID: 15353646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Normalization of energy-dependent gamma survey data.
    Whicker R; Chambers D
    Health Phys; 2015 May; 108(2 Suppl 2):S60-71. PubMed ID: 25811252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and calibration of a real-time airborne radioactivity monitor using direct gamma-ray spectrometry with two scintillation detectors.
    Casanovas R; Morant JJ; Salvadó M
    Appl Radiat Isot; 2014 Jul; 89():102-8. PubMed ID: 24607535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating airborne and ground based gamma spectrometry methods for detecting particulate radioactivity in the environment: a case study of Irish Sea beaches.
    Cresswell AJ; Sanderson DC
    Sci Total Environ; 2012 Oct; 437():285-96. PubMed ID: 22947616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.