These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 24776820)

  • 1. Phase stability of Li-Mn-O oxides as cathode materials for Li-ion batteries: insights from ab initio calculations.
    Longo RC; Kong FT; KC S; Park MS; Yoon J; Yeon DH; Park JH; Doo SG; Cho K
    Phys Chem Chem Phys; 2014 Jun; 16(23):11218-27. PubMed ID: 24776820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unravelling the Structure and Electrochemical Performance of Li-Cr-Mn-O Cathodes: From Spinel to Layered.
    Li X; Li D; Song D; Shi X; Tang X; Zhang H; Zhang L
    ACS Appl Mater Interfaces; 2018 Mar; 10(10):8827-8835. PubMed ID: 29470046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries.
    Gu M; Belharouak I; Zheng J; Wu H; Xiao J; Genc A; Amine K; Thevuthasan S; Baer DR; Zhang JG; Browning ND; Liu J; Wang C
    ACS Nano; 2013 Jan; 7(1):760-7. PubMed ID: 23237664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen Vacancies and Stacking Faults Introduced by Low-Temperature Reduction Improve the Electrochemical Properties of Li
    Sun Y; Cong H; Zan L; Zhang Y
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38545-38555. PubMed ID: 29035035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The positive roles of integrated layered-spinel structures combined with nanocoating in low-cost Li-rich cathode Li[Li₀.₂Fe₀.₁Ni₀.₁₅Mn₀.₅₅]O₂ for lithium-ion batteries.
    Zhao T; Chen S; Chen R; Li L; Zhang X; Xie M; Wu F
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21711-20. PubMed ID: 25402183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vacancy-induced MnO
    Gao Y; Ma J; Wang Z; Lu G; Chen L
    Phys Chem Chem Phys; 2017 Mar; 19(10):7025-7031. PubMed ID: 28245015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-principles study of native point defects in LiNi(1/3)Co(1/3)Mn(1/3)O2 and Li2MnO3.
    Park MS
    Phys Chem Chem Phys; 2014 Aug; 16(31):16798-804. PubMed ID: 25001849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding structural stability of monoclinic LiMnO2 and NaMnO2 upon de-intercalation.
    Tian M; Gao Y; Wang Z; Chen L
    Phys Chem Chem Phys; 2016 Jul; 18(26):17345-50. PubMed ID: 27315463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core-Shell Nanocomposites for Improving the Structural Stability of Li-Rich Layered Oxide Cathode Materials for Li-Ion Batteries.
    Longo RC; Liang C; Kong F; Cho K
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):19226-19234. PubMed ID: 29745224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding of Surface Redox Behaviors of Li2MnO3 in Li-Ion Batteries: First-Principles Prediction and Experimental Validation.
    Kim D; Lim JM; Lim YG; Park MS; Kim YJ; Cho M; Cho K
    ChemSusChem; 2015 Oct; 8(19):3255-62. PubMed ID: 26289748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progress, Challenge, and Prospect of LiMnO
    Ma J; Liu T; Ma J; Zhang C; Yang J
    Adv Sci (Weinh); 2024 Jan; 11(2):e2304938. PubMed ID: 37964412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the effect of an in situ generated and integrated spinel phase on a layered Li-rich cathode material using a non-stoichiometric strategy.
    Zhang J; Gao R; Sun L; Li Z; Zhang H; Hu Z; Liu X
    Phys Chem Chem Phys; 2016 Sep; 18(36):25711-25720. PubMed ID: 27711565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte-cathode interface impacted by the electrochemical cycling: X-ray photoelectron spectroscopy investigation.
    Cherkashinin G; Nikolowski K; Ehrenberg H; Jacke S; Dimesso L; Jaegermann W
    Phys Chem Chem Phys; 2012 Sep; 14(35):12321-31. PubMed ID: 22858824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combinatorial Study of the Li-Ni-Mn-Co Oxide Pseudoquaternary System for Use in Li-Ion Battery Materials Research.
    Brown CR; McCalla E; Watson C; Dahn JR
    ACS Comb Sci; 2015 Jun; 17(6):381-91. PubMed ID: 25970448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Underlying mechanisms of the synergistic role of Li2MnO3 and LiNi1/3Co1/3Mn1/3O2 in high-Mn, Li-rich oxides.
    Lim JM; Kim D; Park MS; Cho M; Cho K
    Phys Chem Chem Phys; 2016 Apr; 18(16):11411-21. PubMed ID: 27056677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of Li-Mn-O mesocrystals with controlled crystal phases through topotactic transformation of MnCO₃.
    Dang F; Hoshino T; Oaki Y; Hosono E; Zhou H; Imai H
    Nanoscale; 2013 Mar; 5(6):2352-7. PubMed ID: 23392120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2.
    Yabuuchi N; Yoshii K; Myung ST; Nakai I; Komaba S
    J Am Chem Soc; 2011 Mar; 133(12):4404-19. PubMed ID: 21375288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Li+ ion transport in LiNi0.5Mn1.5O4 through control of site disorder.
    Zheng J; Xiao J; Yu X; Kovarik L; Gu M; Omenya F; Chen X; Yang XQ; Liu J; Graff GL; Whittingham MS; Zhang JG
    Phys Chem Chem Phys; 2012 Oct; 14(39):13515-21. PubMed ID: 22968196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ab initio investigation of Li2M(0.5)N(0.5)SiO4 (M, N = Mn, Fe, Co Ni) as Li-ion battery cathode materials.
    Kalantarian MM; Asgari S; Capsoni D; Mustarelli P
    Phys Chem Chem Phys; 2013 Jun; 15(21):8035-41. PubMed ID: 23608945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing Oxygen Local Environments in Paramagnetic Battery Materials via (17)O NMR and DFT Calculations.
    Seymour ID; Middlemiss DS; Halat DM; Trease NM; Pell AJ; Grey CP
    J Am Chem Soc; 2016 Aug; 138(30):9405-8. PubMed ID: 27404908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.