These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 24777072)

  • 1. Effect of KTP laser cochleostomy on morphology in the guinea pig inner ear.
    Kamalski DM; Peters JP; de Boorder T; Trabalzini F; Klis SF; Grolman W
    ORL J Otorhinolaryngol Relat Spec; 2014; 76(2):70-5. PubMed ID: 24777072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of laser-assisted cochleostomy on acoustically evoked compound action potentials in the guinea pig.
    Kamalski DM; Peters JP; de Boorder T; Klis SF; Grolman W
    Otol Neurotol; 2014 Sep; 35(8):1306-11. PubMed ID: 25122147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing mechanical effects and sound production of KTP, thulium, and CO2 laser in stapedotomy.
    Kamalski DM; Verdaasdonk RM; de Boorder T; Vincent R; Versnel H; Grolman W
    Otol Neurotol; 2014 Aug; 35(7):1156-62. PubMed ID: 24979128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental study on thermic effects, morphology and function of guinea pig cochlea: a comparison between the erbium:yttrium-aluminum-garnet laser and carbon dioxide laser.
    Ren DD; Chi FL
    Lasers Surg Med; 2008 Aug; 40(6):407-14. PubMed ID: 18649384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CO(2) laser fiber soft cochleostomy: development of a technique using human temporal bones and a guinea pig model.
    Fishman AJ; Moreno LE; Rivera A; Richter CP
    Lasers Surg Med; 2010 Mar; 42(3):245-56. PubMed ID: 20333743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of CO2 laser application to the guinea-pig cochlea on compound action potentials.
    Jovanovic S; Anft D; Schönfeld U; Berghaus A; Scherer H
    Am J Otol; 1999 Mar; 20(2):166-73. PubMed ID: 10100517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anatomy of the middle-turn cochleostomy.
    Isaacson B; Roland PS; Wright CG
    Laryngoscope; 2008 Dec; 118(12):2200-4. PubMed ID: 18948831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inner ear energy exposure while drilling a cochleostomy.
    Eze N; Jiang D; Fitzgerald O'Connor A
    Acta Otolaryngol; 2014 Nov; 134(11):1109-13. PubMed ID: 25315909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of cochleostomy and intracochlear infusion on auditory brain stem response threshold in the guinea pig.
    Carvalho GJ; Lalwani AK
    Am J Otol; 1999 Jan; 20(1):87-90. PubMed ID: 9918180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preservation of auditory brainstem response thresholds after cochleostomy and titanium microactuator implantation in the lateral wall of cat scala tympani.
    Lesinski SG; Prewitt J; Bray V; Aravamudhan R; Bermeo Blanco OA; Farmer-Fedor BL; Ward JA
    Otol Neurotol; 2014 Apr; 35(4):730-8. PubMed ID: 24622027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of Er. YAG laser application in fenestration to the inner ear.
    Oku R; Tanaka F; Tsukasaki N; Kumagami H; Takahashi H
    Auris Nasus Larynx; 2006 Dec; 33(4):387-90. PubMed ID: 16952430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Change in endocochlear potential during experimental insertion of a simulated cochlear implant electrode in the guinea pig.
    Oshima H; Ikeda R; Nomura K; Yamazaki M; Hidaka H; Katori Y; Oshima T; Kawase T; Kobayashi T
    Otol Neurotol; 2014 Feb; 35(2):234-40. PubMed ID: 24448282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Animal model of cochlear third window in the scala vestibuli or scala tympani.
    Attias J; Preis M; Shemesh R; Hadar T; Nageris BI
    Otol Neurotol; 2010 Aug; 31(6):985-90. PubMed ID: 20517168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protection of inner ear function after cochlear implantation: compound action potential measurements after local application of glucocorticoids in the guinea pig cochlea.
    Braun S; Ye Q; Radeloff A; Kiefer J; Gstoettner W; Tillein J
    ORL J Otorhinolaryngol Relat Spec; 2011; 73(4):219-28. PubMed ID: 21778784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of tarflen on inner ear biopotentials in the guinea pig].
    Namysłowski G; Gierek T
    Otolaryngol Pol; 1981; 35(3):251-62. PubMed ID: 7312370
    [No Abstract]   [Full Text] [Related]  

  • 16. Application of carbon dioxide and erbium:yttrium-aluminum-garnet lasers in inner ear surgery: an experimental study.
    Kiefer J; Tillein J; Ye Q; Klinke R; Gstoettner W
    Otol Neurotol; 2004 May; 25(3):400-9. PubMed ID: 15129125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of KTP, Thulium, and CO2 laser in stapedotomy using specialized visualization techniques: thermal effects.
    Kamalski DM; Verdaasdonk RM; de Boorder T; Vincent R; Trabelzini F; Grolman W
    Eur Arch Otorhinolaryngol; 2014 Jun; 271(6):1477-83. PubMed ID: 23880918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical impedance measurements of cochlear structures using the four-electrode reflection-coefficient technique.
    Kumar G; Chokshi M; Richter CP
    Hear Res; 2010 Jan; 259(1-2):86-94. PubMed ID: 19857561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The dynamic behavior of inner ear fluids].
    Giebel W
    Laryngol Rhinol Otol (Stuttg); 1982 Aug; 61(8):481-8. PubMed ID: 7132510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical coherence tomography as an orientation guide in cochlear implant surgery?
    Pau HW; Lankenau E; Just T; Behrend D; Hüttmann G
    Acta Otolaryngol; 2007 Sep; 127(9):907-13. PubMed ID: 17712667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.