BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 24777118)

  • 1. Three-component vesicle aggregation driven by adhesion interactions between Au nanoparticles and polydopamine-coated nanotubes.
    Jin H; Zhou Y; Huang W; Zheng Y; Zhu X; Yan D
    Chem Commun (Camb); 2014 Jun; 50(46):6157-60. PubMed ID: 24777118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanotube composites consisting of metal nanoparticles and polythiophene from electropolymerization of terthiophene-functionalized metal (Au, Pd) nanoparticles.
    Umeda R; Awaji H; Nakahodo T; Fujihara H
    J Am Chem Soc; 2008 Mar; 130(11):3240-1. PubMed ID: 18288846
    [No Abstract]   [Full Text] [Related]  

  • 3. The significant impact of polydopamine on the catalytic performance of the carried Au nanoparticles.
    Ma A; Xie Y; Xu J; Zeng H; Xu H
    Chem Commun (Camb); 2015 Jan; 51(8):1469-71. PubMed ID: 25494408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of catalytic films of the Au nanoparticle-carbon composite tubular arrays.
    Gong W; Su L; Zhang X
    Chem Commun (Camb); 2015 Apr; 51(29):6333-6. PubMed ID: 25760286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of biosensing surfaces using adhesive polydopamine.
    Chu H; Yen CW; Hayden SC
    Biotechnol Prog; 2015; 31(1):299-306. PubMed ID: 25219782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lateral Flow Immunoassay Based on Polydopamine-Coated Gold Nanoparticles for the Sensitive Detection of Zearalenone in Maize.
    Xu S; Zhang G; Fang B; Xiong Q; Duan H; Lai W
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31283-31290. PubMed ID: 31389683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Synthesis of Catalytic Active Au Nanoparticles onto Gibbsite-Polydopamine Core-Shell Nanoplates.
    Cao J; Mei S; Jia H; Ott A; Ballauff M; Lu Y
    Langmuir; 2015 Sep; 31(34):9483-91. PubMed ID: 26266398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size- and coating-dependent uptake of polymer-coated gold nanoparticles in primary human dermal microvascular endothelial cells.
    Freese C; Gibson MI; Klok HA; Unger RE; Kirkpatrick CJ
    Biomacromolecules; 2012 May; 13(5):1533-43. PubMed ID: 22512620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ deposition of gold nanoparticles on polydopamine functionalized silica nanosphere for ultrasensitive nonenzymatic electrochemical immunoassay.
    Lai G; Zhang H; Yong J; Yu A
    Biosens Bioelectron; 2013 Sep; 47():178-83. PubMed ID: 23578971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in polymer protected gold nanoparticles: synthesis, properties and applications.
    Shan J; Tenhu H
    Chem Commun (Camb); 2007 Nov; (44):4580-98. PubMed ID: 17989803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High density decoration of noble metal nanoparticles on polydopamine-functionalized molybdenum disulphide.
    Hussain MA; Yang M; Lee TJ; Kim JW; Choi BG
    J Colloid Interface Sci; 2015 Aug; 451():216-20. PubMed ID: 25898116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible assembly and disassembly of gold nanoparticles directed by a zwitterionic polymer.
    Ding Y; Xia XH; Zhai HS
    Chemistry; 2007; 13(15):4197-202. PubMed ID: 17236228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photochemical approach toward deposition of gold nanoparticles on functionalized carbon nanotubes.
    Lollmahomed FB; Narain R
    Langmuir; 2011 Oct; 27(20):12642-9. PubMed ID: 21879754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of fermentable sugars in beer wort by gold nanoparticles@polydopamine: A layer-by-layer approach for Localized Surface Plasmon Resonance measurements at fixed wavelength.
    Scarano S; Pascale E; Palladino P; Fratini E; Minunni M
    Talanta; 2018 Jun; 183():24-32. PubMed ID: 29567171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic repulsion-controlled formation of polydopamine-gold Janus particles.
    Xu H; Liu X; Su G; Zhang B; Wang D
    Langmuir; 2012 Sep; 28(36):13060-5. PubMed ID: 22905694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical modification of single walled carbon nanotubes with tetrazine-tethered gold nanoparticles via a Diels-Alder reaction.
    Zhu J; Hiltz J; Lennox RB; Schirrmacher R
    Chem Commun (Camb); 2013 Nov; 49(87):10275-7. PubMed ID: 24061535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and equilibrium effects of the surface passivant on the stability of Au nanorods.
    Merrill NA; Sethi M; Knecht MR
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7906-14. PubMed ID: 23919564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of gold nanoparticle-polymer composite particles with raspberry, core-shell and amorphous morphologies at room temperature via electrostatic interactions and diffusion.
    Kanahara M; Shimomura M; Yabu H
    Soft Matter; 2014 Jan; 10(2):275-80. PubMed ID: 24651763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoelectrochemical aptasensor for the sensitive and selective detection of kanamycin based on Au nanoparticle functionalized self-doped TiO2 nanotube arrays.
    Xin Y; Li Z; Zhang Z
    Chem Commun (Camb); 2015 Nov; 51(85):15498-501. PubMed ID: 26382019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spiropyran-modified gold nanoparticles: reversible size control of aggregates by UV and visible light irradiations.
    Shiraishi Y; Shirakawa E; Tanaka K; Sakamoto H; Ichikawa S; Hirai T
    ACS Appl Mater Interfaces; 2014 May; 6(10):7554-62. PubMed ID: 24746341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.