These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 24777167)

  • 1. Fracture toughness of graphene.
    Zhang P; Ma L; Fan F; Zeng Z; Peng C; Loya PE; Liu Z; Gong Y; Zhang J; Zhang X; Ajayan PM; Zhu T; Lou J
    Nat Commun; 2014 Apr; 5():3782. PubMed ID: 24777167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced mechanical properties of nanocomposites at low graphene content.
    Rafiee MA; Rafiee J; Wang Z; Song H; Yu ZZ; Koratkar N
    ACS Nano; 2009 Dec; 3(12):3884-90. PubMed ID: 19957928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fracture behavior of dental composite resins.
    Kim KH; Park JH; Imai Y; Kishi T
    Biomed Mater Eng; 1991; 1(1):45-57. PubMed ID: 1842510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscopic modeling of fracture of 2D graphene systems.
    Jin Y; Yuan FG
    J Nanosci Nanotechnol; 2005 Apr; 5(4):601-8. PubMed ID: 16004126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size-dependent fracture mode transition in copper nanowires.
    Peng C; Zhan Y; Lou J
    Small; 2012 Jun; 8(12):1889-94. PubMed ID: 22461261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toughening Graphene by Integrating Carbon Nanotubes.
    Hacopian EF; Yang Y; Ni B; Li Y; Li X; Chen Q; Guo H; Tour JM; Gao H; Lou J
    ACS Nano; 2018 Aug; 12(8):7901-7910. PubMed ID: 30051705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Well-dispersed chitosan/graphene oxide nanocomposites.
    Yang X; Tu Y; Li L; Shang S; Tao XM
    ACS Appl Mater Interfaces; 2010 Jun; 2(6):1707-13. PubMed ID: 20527778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable stress and controlled thickness modification in graphene by annealing.
    Ni ZH; Wang HM; Ma Y; Kasim J; Wu YH; Shen ZX
    ACS Nano; 2008 May; 2(5):1033-9. PubMed ID: 19206501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking.
    Park S; Lee KS; Bozoklu G; Cai W; Nguyen ST; Ruoff RS
    ACS Nano; 2008 Mar; 2(3):572-8. PubMed ID: 19206584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastic, plastic, and fracture mechanisms in graphene materials.
    Daniels C; Horning A; Phillips A; Massote DV; Liang L; Bullard Z; Sumpter BG; Meunier V
    J Phys Condens Matter; 2015 Sep; 27(37):373002. PubMed ID: 26325114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial bonding characteristics between graphene and dielectric substrates.
    Das S; Lahiri D; Agarwal A; Choi W
    Nanotechnology; 2014 Jan; 25(4):045707. PubMed ID: 24399030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes.
    Shin MK; Lee B; Kim SH; Lee JA; Spinks GM; Gambhir S; Wallace GG; Kozlov ME; Baughman RH; Kim SJ
    Nat Commun; 2012 Jan; 3():650. PubMed ID: 22337128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grain boundary mapping in polycrystalline graphene.
    Kim K; Lee Z; Regan W; Kisielowski C; Crommie MF; Zettl A
    ACS Nano; 2011 Mar; 5(3):2142-6. PubMed ID: 21280616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of fracture mechanics to failure in manatee rib bone.
    Yan J; Clifton KB; Reep RL; Mecholsky JJ
    J Biomech Eng; 2006 Jun; 128(3):281-9. PubMed ID: 16706577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative mechanical property characterization of 3 all-ceramic core materials.
    Wen MY; Mueller HJ; Chai J; Wozniak WT
    Int J Prosthodont; 1999; 12(6):534-41. PubMed ID: 10815607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gamma irradiation alters fatigue-crack behavior and fracture toughness in 1900H and GUR 1050 UHMWPE.
    Cole JC; Lemons JE; Eberhardt AW
    J Biomed Mater Res; 2002; 63(5):559-66. PubMed ID: 12209901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of a high fracture toughness composite ceramic for dental applications.
    Aboushelib MN; Kleverlaan CJ; Feilzer AJ
    J Prosthodont; 2008 Oct; 17(7):538-44. PubMed ID: 18761572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple and accurate fracture toughness testing methods for pyrolytic carbon/graphite composites used in heart-valve prostheses.
    Kruzic JJ; Kuskowski SJ; Ritchie RO
    J Biomed Mater Res A; 2005 Sep; 74(3):461-4. PubMed ID: 15973730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ tensile testing of nanofibers by combining atomic force microscopy and scanning electron microscopy.
    Hang F; Lu D; Bailey RJ; Jimenez-Palomar I; Stachewicz U; Cortes-Ballesteros B; Davies M; Zech M; Bödefeld C; Barber AH
    Nanotechnology; 2011 Sep; 22(36):365708. PubMed ID: 21844643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct measurement of adhesion energy of monolayer graphene as-grown on copper and its application to renewable transfer process.
    Yoon T; Shin WC; Kim TY; Mun JH; Kim TS; Cho BJ
    Nano Lett; 2012 Mar; 12(3):1448-52. PubMed ID: 22335825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.