These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24777285)

  • 1. The hybrid concept for realization of an ultra-thin plasmonic metamaterial antireflection coating and plasmonic rainbow.
    Hedayati MK; Fahr S; Etrich C; Faupel F; Rockstuhl C; Elbahri M
    Nanoscale; 2014 Jun; 6(11):6037-45. PubMed ID: 24777285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antireflective Coatings: Conventional Stacking Layers and Ultrathin Plasmonic Metasurfaces, A Mini-Review.
    Keshavarz Hedayati M; Elbahri M
    Materials (Basel); 2016 Jun; 9(6):. PubMed ID: 28773620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband Anti-Reflective Coating Based on Plasmonic Nanocomposite.
    Keshavarz Hedayati M; Abdelaziz M; Etrich C; Homaeigohar S; Rockstuhl C; Elbahri M
    Materials (Basel); 2016 Jul; 9(8):. PubMed ID: 28773753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evanescent field enhancement due to plasmonic resonances of a metamaterial slab.
    Chiu KP; Kao TS; Tsai DP
    J Microsc; 2008 Feb; 229(Pt 2):313-9. PubMed ID: 18304091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New artificial dielectric metamaterial and its application as a terahertz antireflection coating.
    Zhang J; Ade PA; Mauskopf P; Moncelsi L; Savini G; Whitehouse N
    Appl Opt; 2009 Dec; 48(35):6635-42. PubMed ID: 20011003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can plasmonic Al nanoparticles improve absorption in triple junction solar cells?
    Yang L; Pillai S; Green MA
    Sci Rep; 2015 Jul; 5():11852. PubMed ID: 26138405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric Plasmonic Moth-Eye Nanoarrays with Side Opening for Broadband Incident-Angle-Insensitive Antireflection and Absorption.
    Xia R; Li Y; You S; Lu C; Xu W; Ni Y
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of antireflective nanostructures and optical coatings for next-generation multijunction photovoltaic devices.
    Perl EE; McMahon WE; Bowers JE; Friedman DJ
    Opt Express; 2014 Aug; 22 Suppl 5():A1243-56. PubMed ID: 25322179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and deposition of a metal-like and admittance-matching metamaterial as an ultra-thin perfect absorber.
    Jen YJ; Liu WC; Chen TK; Lin SW; Jhang YC
    Sci Rep; 2017 Jun; 7(1):3076. PubMed ID: 28596611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance enhancement due to a top dielectric coating on a metamaterial perfect absorber.
    Pradhan JK; Gopal Achanta V; Agarwal AK; Anantha Ramakrishna S
    Appl Opt; 2020 Jun; 59(17):E118-E125. PubMed ID: 32543522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-wideband perfect reflection and tunneling by all-dielectric metamaterials.
    Qiu J; Liu X; Liang Z; Zhu J
    Opt Lett; 2021 Feb; 46(4):849-852. PubMed ID: 33577527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-aperture wide-bandwidth antireflection-coated silicon lenses for millimeter wavelengths.
    Datta R; Munson CD; Niemack MD; McMahon JJ; Britton J; Wollack EJ; Beall J; Devlin MJ; Fowler J; Gallardo P; Hubmayr J; Irwin K; Newburgh L; Nibarger JP; Page L; Quijada MA; Schmitt BL; Staggs ST; Thornton R; Zhang L
    Appl Opt; 2013 Dec; 52(36):8747-58. PubMed ID: 24513939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface structured optical coatings with near-perfect broadband and wide-angle antireflective properties.
    Perl EE; McMahon WE; Farrell RM; DenBaars SP; Speck JS; Bowers JE
    Nano Lett; 2014 Oct; 14(10):5960-4. PubMed ID: 25238041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic and silicon spherical nanoparticle antireflective coatings.
    Baryshnikova KV; Petrov MI; Babicheva VE; Belov PA
    Sci Rep; 2016 Mar; 6():22136. PubMed ID: 26926602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epoxy-based broadband antireflection coating for millimeter-wave optics.
    Rosen D; Suzuki A; Keating B; Krantz W; Lee AT; Quealy E; Richards PL; Siritanasak P; Walker W
    Appl Opt; 2013 Nov; 52(33):8102-5. PubMed ID: 24513764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic layers based on Au-nanoparticle-doped TiO2 for optoelectronics: structural and optical properties.
    Pedrueza E; Sancho-Parramon J; Bosch S; Valdés JL; Martinez-Pastor JP
    Nanotechnology; 2013 Feb; 24(6):065202. PubMed ID: 23339892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metamaterial-inspired compact optical coating for broadband polarization beam splitting.
    Jen YJ; Jhang YC; Wang WC; Wu KL
    Opt Express; 2018 Jan; 26(2):811-823. PubMed ID: 29401961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of an ultrathin broadband transparent and high-conductive screen using plasmonic nanostructures.
    Hao J; Qiu CW; Qiu M; Zouhdi S
    Opt Lett; 2012 Dec; 37(23):4955-7. PubMed ID: 23202102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband infrared metamaterial absorber with visible transparency using ITO as ground plane.
    Dayal G; Ramakrishna SA
    Opt Express; 2014 Jun; 22(12):15104-10. PubMed ID: 24977603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical design of organic solar cell with hybrid plasmonic system.
    Sha WE; Choy WC; Chen YP; Chew WC
    Opt Express; 2011 Aug; 19(17):15908-18. PubMed ID: 21934954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.