These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 24777315)

  • 1. First-principles vdW-DF study on the enhanced hydrogen storage capacity of Pt-adsorbed graphene.
    Khosravi A; Fereidoon A; Ahangari MG; Ganji MD; Emami SN
    J Mol Model; 2014 May; 20(5):2230. PubMed ID: 24777315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploration of Long-Life Pt/Heteroatom-Doped Graphene Catalysts in Hydrogen Atmosphere.
    Hasegawa S; Kunisada Y; Sakaguchi N
    ACS Omega; 2019 Apr; 4(4):6573-6584. PubMed ID: 31459787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical insight into hydrogen adsorption onto graphene: a first-principles B3LYP-D3 study.
    Darvish Ganji M; Hosseini-Khah SM; Amini-Tabar Z
    Phys Chem Chem Phys; 2015 Jan; 17(4):2504-11. PubMed ID: 25490973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sc-Decorated Porous Graphene for High-Capacity Hydrogen Storage: First-Principles Calculations.
    Chen Y; Wang J; Yuan L; Zhang M; Zhang C
    Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28767084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of a single Pt atom on graphene: spin crossing between physisorbed triplet and chemisorbed singlet states.
    Ahn J; Hong I; Lee G; Shin H; Benali A; Kwon Y
    Phys Chem Chem Phys; 2021 Oct; 23(38):22147-22154. PubMed ID: 34580679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of hydrogen molecules on the platinum-doped boron nitride nanotubes.
    Wu X; Yang JL; Zeng XC
    J Chem Phys; 2006 Jul; 125(4):44704. PubMed ID: 16942171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scandium Decoration of Boron Doped Porous Graphene for High-Capacity Hydrogen Storage.
    Wang J; Chen Y; Yuan L; Zhang M; Zhang C
    Molecules; 2019 Jun; 24(13):. PubMed ID: 31252605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen vibrational modes on graphene and relaxation of the C-H stretch excitation from first-principles calculations.
    Sakong S; Kratzer P
    J Chem Phys; 2010 Aug; 133(5):054505. PubMed ID: 20707540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene as a Sensor for Lung Cancer: Insights into Adsorption of VOCs Using vdW DFT.
    Phung VBT; Tran TN; Tran QH; Luong TT; Dinh VA
    ACS Omega; 2024 Jan; 9(2):2302-2313. PubMed ID: 38250431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A DFT study of halogen atoms adsorbed on graphene layers.
    Medeiros PV; Mascarenhas AJ; de Brito Mota F; de Castilho CM
    Nanotechnology; 2010 Dec; 21(48):485701. PubMed ID: 21063056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical investigation of Ti-adsorbed graphene for hydrogen storage using the ab-initio method.
    Park HL; Yoo DS; Yi SC; Chung YC
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6131-5. PubMed ID: 22121672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced hydrogen storage performance of graphene nanoflakes doped with Cr atoms: a DFT study.
    Xiang C; Li A; Yang S; Lan Z; Xie W; Tang Y; Xu H; Wang Z; Gu H
    RSC Adv; 2019 Aug; 9(44):25690-25696. PubMed ID: 35530093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. H-Spillover through the Catalyst Saturation: An Ab Initio Thermodynamics Study.
    Singh AK; Ribas MA; Yakobson BI
    ACS Nano; 2009 Jul; 3(7):1657-62. PubMed ID: 19534542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of Mn atom on pristine and defected graphene: a density functional theory study.
    Anithaa VS; Shankar R; Vijayakumar S
    J Mol Model; 2017 Apr; 23(4):132. PubMed ID: 28337679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitigation of CO poisoning on functionalized Pt-TiN surfaces.
    Zhang RQ; Kim CE; Yu BD; Stampfl C; Soon A
    Phys Chem Chem Phys; 2013 Nov; 15(44):19450-6. PubMed ID: 24126922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced hydrogen sensing properties of graphene by introducing a mono-atom-vacancy.
    Jiang QG; Ao ZM; Zheng WT; Li S; Jiang Q
    Phys Chem Chem Phys; 2013 Dec; 15(48):21016-22. PubMed ID: 24217016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of CO
    Yamamoto S; Takeuchi K; Hamamoto Y; Liu RY; Shiozawa Y; Koitaya T; Someya T; Tashima K; Fukidome H; Mukai K; Yoshimoto S; Suemitsu M; Morikawa Y; Yoshinobu J; Matsuda I
    Phys Chem Chem Phys; 2018 Jul; 20(29):19532-19538. PubMed ID: 29999069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ti
    Intayot R; Rungnim C; Namuangruk S; Yodsin N; Jungsuttiwong S
    Dalton Trans; 2021 Sep; 50(33):11398-11411. PubMed ID: 34292283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CO oxidation catalyzed by Pt-embedded graphene: a first-principles investigation.
    Liu X; Sui Y; Duan T; Meng C; Han Y
    Phys Chem Chem Phys; 2014 Nov; 16(43):23584-93. PubMed ID: 25058493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical adsorption and charge transfer of molecular Br2 on graphene.
    Chen Z; Darancet P; Wang L; Crowther AC; Gao Y; Dean CR; Taniguchi T; Watanabe K; Hone J; Marianetti CA; Brus LE
    ACS Nano; 2014 Mar; 8(3):2943-50. PubMed ID: 24528378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.