These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 24777668)
1. An understanding of intervertebral disc development, maturation and cell phenotype provides clues to direct cell-based tissue regeneration therapies for disc degeneration. Rodrigues-Pinto R; Richardson SM; Hoyland JA Eur Spine J; 2014 Sep; 23(9):1803-14. PubMed ID: 24777668 [TBL] [Abstract][Full Text] [Related]
2. Native nucleus pulposus tissue matrix promotes notochordal differentiation of human induced pluripotent stem cells with potential for treating intervertebral disc degeneration. Liu Y; Fu S; Rahaman MN; Mao JJ; Bal BS J Biomed Mater Res A; 2015 Mar; 103(3):1053-9. PubMed ID: 24889905 [TBL] [Abstract][Full Text] [Related]
3. Current Status of the Instructional Cues Provided by Notochordal Cells in Novel Disc Repair Strategies. Matta A; Erwin WM Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008853 [TBL] [Abstract][Full Text] [Related]
4. Understanding the native nucleus pulposus cell phenotype has important implications for intervertebral disc regeneration strategies. Ludwinski FE; Gnanalingham K; Richardson SM; Hoyland JA Regen Med; 2013 Jan; 8(1):75-87. PubMed ID: 23259807 [TBL] [Abstract][Full Text] [Related]
5. Notochordal cells in the adult intervertebral disc: new perspective on an old question. Risbud MV; Shapiro IM Crit Rev Eukaryot Gene Expr; 2011; 21(1):29-41. PubMed ID: 21967331 [TBL] [Abstract][Full Text] [Related]
6. Differentiation of Pluripotent Stem Cells into Nucleus Pulposus Progenitor Cells for Intervertebral Disc Regeneration. Xia K; Gong Z; Zhu J; Yu W; Wang Y; Wang J; Xu A; Zhou X; Tao H; Li F; Liang C Curr Stem Cell Res Ther; 2019; 14(1):57-64. PubMed ID: 30227822 [TBL] [Abstract][Full Text] [Related]
7. Intervertebral disc degeneration and regeneration: a motion segment perspective. Ashinsky B; Smith HE; Mauck RL; Gullbrand SE Eur Cell Mater; 2021 Mar; 41():370-380. PubMed ID: 33763848 [TBL] [Abstract][Full Text] [Related]
8. Transplantation of dedifferentiation fat cells promotes intervertebral disc regeneration in a rat intervertebral disc degeneration model. Nakayama E; Matsumoto T; Kazama T; Kano K; Tokuhashi Y Biochem Biophys Res Commun; 2017 Nov; 493(2):1004-1009. PubMed ID: 28942142 [TBL] [Abstract][Full Text] [Related]
9. Effect of hyperglycemia on apoptosis of notochordal cells and intervertebral disc degeneration in diabetic rats. Won HY; Park JB; Park EY; Riew KD J Neurosurg Spine; 2009 Dec; 11(6):741-8. PubMed ID: 19951028 [TBL] [Abstract][Full Text] [Related]
10. Transcriptional profiling of bovine intervertebral disc cells: implications for identification of normal and degenerate human intervertebral disc cell phenotypes. Minogue BM; Richardson SM; Zeef LA; Freemont AJ; Hoyland JA Arthritis Res Ther; 2010; 12(1):R22. PubMed ID: 20149220 [TBL] [Abstract][Full Text] [Related]
11. Intervertebral disc swelling maintains strain homeostasis throughout the annulus fibrosus: A finite element analysis of healthy and degenerated discs. Yang B; O'Connell GD Acta Biomater; 2019 Dec; 100():61-74. PubMed ID: 31568880 [TBL] [Abstract][Full Text] [Related]
12. Diversity of intervertebral disc cells: phenotype and function. Pattappa G; Li Z; Peroglio M; Wismer N; Alini M; Grad S J Anat; 2012 Dec; 221(6):480-96. PubMed ID: 22686699 [TBL] [Abstract][Full Text] [Related]
13. Human umbilical cord-derived mesenchymal stem cells and their chondroprogenitor derivatives reduced pain and inflammation signaling and promote regeneration in a rat intervertebral disc degeneration model. Ekram S; Khalid S; Bashir I; Salim A; Khan I Mol Cell Biochem; 2021 Aug; 476(8):3191-3205. PubMed ID: 33864569 [TBL] [Abstract][Full Text] [Related]
14. Allogeneic Mesenchymal Precursor Cells Promote Healing in Postero-lateral Annular Lesions and Improve Indices of Lumbar Intervertebral Disc Degeneration in an Ovine Model. Freeman BJC; Kuliwaba JS; Jones CF; Shu CC; Colloca CJ; Zarrinkalam MR; Mulaibrahimovic A; Gronthos S; Zannettino ACW; Howell S Spine (Phila Pa 1976); 2016 Sep; 41(17):1331-1339. PubMed ID: 26913464 [TBL] [Abstract][Full Text] [Related]
15. Intervertebral disc regeneration or repair with biomaterials and stem cell therapy--feasible or fiction? Chan SC; Gantenbein-Ritter B Swiss Med Wkly; 2012; 142():w13598. PubMed ID: 22653467 [TBL] [Abstract][Full Text] [Related]
17. Intervertebral disc and endplate cell characterisation highlights annulus fibrosus cells as the most promising for tissue-specific disc degeneration therapy. De Luca P; Castagnetta M; de Girolamo L; Coco S; Malacarne M; Ragni E; Viganò M; Lugano G; Brayda-Bruno M; Coviello D; Colombini A Eur Cell Mater; 2020 Mar; 39():156-170. PubMed ID: 32125689 [TBL] [Abstract][Full Text] [Related]
18. Stem cell-based approaches for intervertebral disc regeneration. Huang S; Tam V; Cheung KM; Long D; Lv M; Wang T; Zhou G Curr Stem Cell Res Ther; 2011 Dec; 6(4):317-26. PubMed ID: 21190533 [TBL] [Abstract][Full Text] [Related]
19. Repair and Regenerative Therapies of the Annulus Fibrosus of the Intervertebral Disc. Li X; Dou Q; Kong Q J Coll Physicians Surg Pak; 2016 Feb; 26(2):138-44. PubMed ID: 26876403 [TBL] [Abstract][Full Text] [Related]
20. Notochordal and nucleus pulposus marker expression is maintained by sub-populations of adult human nucleus pulposus cells through aging and degeneration. Richardson SM; Ludwinski FE; Gnanalingham KK; Atkinson RA; Freemont AJ; Hoyland JA Sci Rep; 2017 May; 7(1):1501. PubMed ID: 28473691 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]