These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24777701)

  • 1. Discrimination of adenine nucleotides and pyrophosphate in water by a zinc complex of an anthracene-based cyclophane.
    Hu P; Yang S; Feng G
    Org Biomol Chem; 2014 Jun; 12(22):3701-6. PubMed ID: 24777701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence sensing of ADP over ATP and PPi in 100% aqueous solution.
    Huang F; Hao G; Wu F; Feng G
    Analyst; 2015 Sep; 140(17):5873-6. PubMed ID: 26213259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly selective recognition and fluorescence imaging of adenosine polyphosphates in aqueous solution.
    Zhang M; Ma WJ; He CT; Jiang L; Lu TB
    Inorg Chem; 2013 May; 52(9):4873-9. PubMed ID: 23560560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly selective colorimetric sensing pyrophosphate in water by a NBD-phenoxo-bridged dinuclear Zn(II) complex.
    Yang S; Feng G; Williams NH
    Org Biomol Chem; 2012 Aug; 10(29):5606-12. PubMed ID: 22733118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An unexpected highly selective mononuclear zinc complex for adenosine diphosphate (ADP).
    Shi L; Hu P; Ren Y; Feng G
    Chem Commun (Camb); 2013 Dec; 49(99):11704-6. PubMed ID: 24192643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition of AMP, ADP and ATP through Cooperative Binding by Cu(II) and Zn(II) Complexes Containing Urea and/or Phenylboronic-Acid Moieties.
    Carreira-Barral I; Fernández-Pérez I; Mato-Iglesias M; de Blas A; Platas-Iglesias C; Esteban-Gómez D
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29470445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel polynorbornene-based chemosensor for the fluorescence sensing of Zn2+ and Cd2+ and subsequent detection of pyrophosphate in aqueous solutions.
    Yao PS; Liu Z; Ge JZ; Chen Y; Cao QY
    Dalton Trans; 2015 Apr; 44(16):7470-6. PubMed ID: 25803003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective sensing of ATP by hydroxide-bridged dizinc(ii) complexes offering a hydrogen bonding cavity.
    Bansal D; Gupta R
    Dalton Trans; 2019 Oct; 48(39):14737-14747. PubMed ID: 31549128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time fluorescence assays of alkaline phosphatase and ATP sulfurylase activities based on a novel PPi fluorescent probe.
    Wang X; Zhang Z; Ma X; Wen J; Geng Z; Wang Z
    Talanta; 2015 May; 137():156-60. PubMed ID: 25770619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrophosphate-induced reorganization of a reporter-receptor assembly via boronate esterification; a new strategy for the turn-on fluorescent detection of multi-phosphates in aqueous solution.
    Nonaka A; Horie S; James TD; Kubo Y
    Org Biomol Chem; 2008 Oct; 6(19):3621-5. PubMed ID: 19082166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyridine-biquinoline-metal complexes for sensing pyrophosphate and hydrogen sulfide in aqueous buffer and in cells.
    Hai Z; Bao Y; Miao Q; Yi X; Liang G
    Anal Chem; 2015 Mar; 87(5):2678-84. PubMed ID: 25673091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrophosphate Recognition and Sensing in Water Using Bis[zinc(II)dipicolylamino]-Functionalized Peptides.
    Jolliffe KA
    Acc Chem Res; 2017 Sep; 50(9):2254-2263. PubMed ID: 28805368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zinc-cyclen coordination to UTP, TTP or pyrophosphate induces pyrene excimer emission.
    Schmidt F; Stadlbauer S; König B
    Dalton Trans; 2010 Aug; 39(31):7250-61. PubMed ID: 20520892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ratiometric detection of adenosine triphosphate (ATP) in water and real-time monitoring of apyrase activity with a tripodal zinc complex.
    Butler SJ
    Chemistry; 2014 Nov; 20(48):15768-74. PubMed ID: 25303281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrolysis of adenosine triphosphate by crystalline yeast pyrophosphatase. Effect of zinc and magnesium ions.
    KUNITZ M
    J Gen Physiol; 1962 Mar; 45(4)Pt 2(4):31-46. PubMed ID: 14460583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective recognition of pyrophosphate in water using a backbone modified cyclic peptide receptor.
    McDonough MJ; Reynolds AJ; Lee WY; Jolliffe KA
    Chem Commun (Camb); 2006 Jul; (28):2971-3. PubMed ID: 16832507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective binding and fluorescence sensing of diphosphate in H2O via Zn(2+)-induced allosteric regulation of the receptor structure.
    Bazzicalupi C; Bencini A; Puccioni S; Valtancoli B; Gratteri P; Garau A; Lippolis V
    Chem Commun (Camb); 2012 Jan; 48(1):139-41. PubMed ID: 22056995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. π-π* Emission from a tetrazine derivative complexed with zinc ion in aqueous solution: a unique water-soluble fluorophore.
    Yuasa J; Mitsui A; Kawai T
    Chem Commun (Camb); 2011 May; 47(20):5807-9. PubMed ID: 21487633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective pyrophosphate recognition by cyclic peptide receptors in physiological saline.
    Butler SJ; Jolliffe KA
    Chem Asian J; 2012 Nov; 7(11):2621-8. PubMed ID: 22965665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aqueous fluorometric and colorimetric sensing of phosphate ions by a fluorescent dinuclear zinc complex.
    Khatua S; Choi SH; Lee J; Kim K; Do Y; Churchill DG
    Inorg Chem; 2009 Apr; 48(7):2993-9. PubMed ID: 19265392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.