These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
311 related articles for article (PubMed ID: 24777945)
1. Modulated ionomer distribution in the catalyst layer of polymer electrolyte membrane fuel cells for high temperature operation. Choo MJ; Oh KH; Kim HT; Park JK ChemSusChem; 2014 Aug; 7(8):2335-41. PubMed ID: 24777945 [TBL] [Abstract][Full Text] [Related]
2. PEMFC catalyst layers: the role of micropores and mesopores on water sorption and fuel cell activity. Soboleva T; Malek K; Xie Z; Navessin T; Holdcroft S ACS Appl Mater Interfaces; 2011 Jun; 3(6):1827-37. PubMed ID: 21574609 [TBL] [Abstract][Full Text] [Related]
3. Ultrahigh PEMFC performance of a thin-film, dual-electrode assembly with tailored electrode morphology. Jung CY; Kim TH; Yi SC ChemSusChem; 2014 Feb; 7(2):466-73. PubMed ID: 24436310 [TBL] [Abstract][Full Text] [Related]
4. Transport and Electrochemical Interface Properties of Ionomers in Low-Pt Loading Catalyst Layers: Effect of Ionomer Equivalent Weight and Relative Humidity. Poojary S; Islam MN; Shrivastava UN; Roberts EPL; Karan K Molecules; 2020 Jul; 25(15):. PubMed ID: 32722653 [TBL] [Abstract][Full Text] [Related]
5. Zoom in Catalyst/Ionomer Interface in Polymer Electrolyte Membrane Fuel Cell Electrodes: Impact of Catalyst/Ionomer Dispersion Media/Solvent. Sharma R; Andersen SM ACS Appl Mater Interfaces; 2018 Nov; 10(44):38125-38133. PubMed ID: 30360111 [TBL] [Abstract][Full Text] [Related]
6. The influence of membrane electrode assembly water content on the performance of a polymer electrolyte membrane fuel cell as investigated by 1H NMR microscopy. Feindel KW; Bergens SH; Wasylishen RE Phys Chem Chem Phys; 2007 Apr; 9(15):1850-7. PubMed ID: 17415498 [TBL] [Abstract][Full Text] [Related]
7. Full Parametric Study of the Influence of Ionomer Content, Catalyst Loading and Catalyst Type on Oxygen and Ion Transport in PEM Fuel Cell Catalyst Layers. Alink R; Singh R; Schneider P; Christmann K; Schall J; Keding R; Zamel N Molecules; 2020 Mar; 25(7):. PubMed ID: 32230750 [TBL] [Abstract][Full Text] [Related]
8. Tuning the Ionomer Distribution in the Fuel Cell Catalyst Layer with Scaling the Ionomer Aggregate Size in Dispersion. Doo G; Lee JH; Yuk S; Choi S; Lee DH; Lee DW; Kim HG; Kwon SH; Lee SG; Kim HT ACS Appl Mater Interfaces; 2018 May; 10(21):17835-17841. PubMed ID: 29722957 [TBL] [Abstract][Full Text] [Related]
9. Equation Elucidating the Catalyst-Layer Proton Conductivity in a Polymer Electrolyte Fuel Cell Based on the Ionomer Distribution Determined Using Small-Angle Neutron Scattering. Harada M; Kadoura H; Takata SI; Iwase H; Kajiya S; Suzuki T; Hasegawa N; Shinohara A; Kato S ACS Appl Mater Interfaces; 2023 Sep; 15(36):42594-42602. PubMed ID: 37650483 [TBL] [Abstract][Full Text] [Related]
10. Potential-Dependent Ionomer Rearrangement on the Pt Surface in Polymer Electrolyte Membrane Fuel Cells. Lee DW; Hyun J; Oh E; Seok K; Bae H; Park J; Kim HT ACS Appl Mater Interfaces; 2024 Jan; 16(4):4637-4647. PubMed ID: 38251952 [TBL] [Abstract][Full Text] [Related]
11. A highly stable anode, carbon-free, catalyst support based on tungsten trioxide nanoclusters for proton-exchange membrane fuel cells. Dou M; Hou M; Zhang H; Li G; Lu W; Wei Z; Shao Z; Yi B ChemSusChem; 2012 May; 5(5):945-51. PubMed ID: 22532479 [TBL] [Abstract][Full Text] [Related]
12. Direct alcohol fuel cells: toward the power densities of hydrogen-fed proton exchange membrane fuel cells. Chen Y; Bellini M; Bevilacqua M; Fornasiero P; Lavacchi A; Miller HA; Wang L; Vizza F ChemSusChem; 2015 Feb; 8(3):524-33. PubMed ID: 25504942 [TBL] [Abstract][Full Text] [Related]
13. Double-layer ionomer membrane for improving fuel cell performance. Mochizuki T; Uchida M; Uchida H; Watanabe M; Miyatake K ACS Appl Mater Interfaces; 2014 Aug; 6(16):13894-9. PubMed ID: 24988282 [TBL] [Abstract][Full Text] [Related]
14. Characterization of sulfonated poly(ether ether ketone)/silane nanocomposite membrane for high temperature polymer electrolyte membrane fuel cells. Ghil LJ; Kim CK; Park NR; Rhee HW J Nanosci Nanotechnol; 2011 Jan; 11(1):331-4. PubMed ID: 21446450 [TBL] [Abstract][Full Text] [Related]
15. Controlling the Distribution of Perfluorinated Sulfonic Acid Ionomer with Elastin-like Polypeptide. Pramounmat N; Loney CN; Kim C; Wiles L; Ayers KE; Kusoglu A; Renner JN ACS Appl Mater Interfaces; 2019 Nov; 11(46):43649-43658. PubMed ID: 31644259 [TBL] [Abstract][Full Text] [Related]
16. Estimation of electrode ionomer oxygen permeability and ionomer-phase oxygen transport resistance in polymer electrolyte fuel cells. Sambandam S; Parrondo J; Ramani V Phys Chem Chem Phys; 2013 Sep; 15(36):14994-5002. PubMed ID: 23912796 [TBL] [Abstract][Full Text] [Related]
17. High-temperature proton-exchange-membrane fuel cells using an ether-containing polybenzimidazole membrane as electrolyte. Li J; Li X; Zhao Y; Lu W; Shao Z; Yi B ChemSusChem; 2012 May; 5(5):896-900. PubMed ID: 22529063 [TBL] [Abstract][Full Text] [Related]
18. Dictating Pt-Based Electrocatalyst Performance in Polymer Electrolyte Fuel Cells, from Formulation to Application. Van Cleve T; Khandavalli S; Chowdhury A; Medina S; Pylypenko S; Wang M; More KL; Kariuki N; Myers DJ; Weber AZ; Mauger SA; Ulsh M; Neyerlin KC ACS Appl Mater Interfaces; 2019 Dec; 11(50):46953-46964. PubMed ID: 31742376 [TBL] [Abstract][Full Text] [Related]
19. Temperature- and humidity-controlled SAXS analysis of proton-conductive ionomer membranes for fuel cells. Mochizuki T; Kakinuma K; Uchida M; Deki S; Watanabe M; Miyatake K ChemSusChem; 2014 Mar; 7(3):729-33. PubMed ID: 24578201 [TBL] [Abstract][Full Text] [Related]
20. Tuned polymer electrolyte membranes based on aromatic polyethers for fuel cell applications. Miyatake K; Chikashige Y; Higuchi E; Watanabe M J Am Chem Soc; 2007 Apr; 129(13):3879-87. PubMed ID: 17352469 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]