These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 24778971)

  • 1. The softening of human bladder cancer cells happens at an early stage of the malignancy process.
    Ramos JR; Pabijan J; Garcia R; Lekka M
    Beilstein J Nanotechnol; 2014; 5():447-57. PubMed ID: 24778971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discriminating bladder cancer cells through rheological mechanomarkers at cell and spheroid levels.
    Gnanachandran K; Kędracka-Krok S; Pabijan J; Lekka M
    J Biomech; 2022 Nov; 144():111346. PubMed ID: 36252307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Actin Organization on the Stiffness of Living Breast Cancer Cells Revealed by Peak-Force Modulation Atomic Force Microscopy.
    Calzado-Martín A; Encinar M; Tamayo J; Calleja M; San Paulo A
    ACS Nano; 2016 Mar; 10(3):3365-74. PubMed ID: 26901115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell stiffness determined by atomic force microscopy and its correlation with cell motility.
    Luo Q; Kuang D; Zhang B; Song G
    Biochim Biophys Acta; 2016 Sep; 1860(9):1953-60. PubMed ID: 27288584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depth-sensing analysis of cytoskeleton organization based on AFM data.
    Pogoda K; Jaczewska J; Wiltowska-Zuber J; Klymenko O; Zuber K; Fornal M; Lekka M
    Eur Biophys J; 2012 Jan; 41(1):79-87. PubMed ID: 22038077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy.
    Lekka M; Laidler P; Gil D; Lekki J; Stachura Z; Hrynkiewicz AZ
    Eur Biophys J; 1999; 28(4):312-6. PubMed ID: 10394623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic force microscope-based single cell force spectroscopy of breast cancer cell lines: an approach for evaluating cellular invasion.
    Omidvar R; Tafazzoli-Shadpour M; Shokrgozar MA; Rostami M
    J Biomech; 2014 Oct; 47(13):3373-9. PubMed ID: 25169659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the elastic Young's modulus and cytotoxicity variations in fibroblasts exposed to carbon-based nanomaterials.
    Pastrana HF; Cartagena-Rivera AX; Raman A; Ávila A
    J Nanobiotechnology; 2019 Feb; 17(1):32. PubMed ID: 30797235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring Elastic Properties of Single Cancer Cells by AFM.
    Lekka M; Pabijan J
    Methods Mol Biol; 2019; 1886():315-324. PubMed ID: 30374876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping of biomechanical properties of cell lines on altered matrix stiffness using atomic force microscopy.
    Wala J; Das S
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1523-1536. PubMed ID: 31907681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscoelastic properties of normal and cancerous human breast cells are affected differently by contact to adjacent cells.
    Schierbaum N; Rheinlaender J; Schäffer TE
    Acta Biomater; 2017 Jun; 55():239-248. PubMed ID: 28396292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human airway epithelial cells investigated by atomic force microscopy: A hint to cystic fibrosis epithelial pathology.
    Lasalvia M; Castellani S; D'Antonio P; Perna G; Carbone A; Colia AL; Maffione AB; Capozzi V; Conese M
    Exp Cell Res; 2016 Oct; 348(1):46-55. PubMed ID: 27590528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrimination Between Normal and Cancerous Cells Using AFM.
    Lekka M
    Bionanoscience; 2016; 6():65-80. PubMed ID: 27014560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pluripotency of embryonic stem cells lacking clathrin-mediated endocytosis cannot be rescued by restoring cellular stiffness.
    Mote RD; Yadav J; Singh SB; Tiwari M; V SL; Patil S; Subramanyam D
    J Biol Chem; 2020 Dec; 295(49):16888-16896. PubMed ID: 33087446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cancer cell recognition--mechanical phenotype.
    Lekka M; Pogoda K; Gostek J; Klymenko O; Prauzner-Bechcicki S; Wiltowska-Zuber J; Jaczewska J; Lekki J; Stachura Z
    Micron; 2012 Dec; 43(12):1259-66. PubMed ID: 22436422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic force microscopy studies on cellular elastic and viscoelastic properties.
    Li M; Liu L; Xi N; Wang Y
    Sci China Life Sci; 2018 Jan; 61(1):57-67. PubMed ID: 28667516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterising the mechanical properties of haematopoietic and mesenchymal stem cells using micromanipulation and atomic force microscopy.
    Du M; Kavanagh D; Kalia N; Zhang Z
    Med Eng Phys; 2019 Nov; 73():18-29. PubMed ID: 31405755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical properties of fibroblasts depend on level of cancer transformation.
    Efremov YM; Lomakina ME; Bagrov DV; Makhnovskiy PI; Alexandrova AY; Kirpichnikov MP; Shaitan KV
    Biochim Biophys Acta; 2014 May; 1843(5):1013-9. PubMed ID: 24530505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane cholesterol and substrate stiffness co-ordinate to induce the remodelling of the cytoskeleton and the alteration in the biomechanics of vascular smooth muscle cells.
    Sanyour HJ; Li N; Rickel AP; Childs JD; Kinser CN; Hong Z
    Cardiovasc Res; 2019 Jul; 115(8):1369-1380. PubMed ID: 30395154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological and mechanical stability of bladder cancer cells in response to substrate rigidity.
    Lekka M; Pabijan J; Orzechowska B
    Biochim Biophys Acta Gen Subj; 2019 Jun; 1863(6):1006-1014. PubMed ID: 30878701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.