These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 24778977)

  • 1. Calibration of quartz tuning fork spring constants for non-contact atomic force microscopy: direct mechanical measurements and simulations.
    Falter J; Stiefermann M; Langewisch G; Schurig P; Hölscher H; Fuchs H; Schirmeisen A
    Beilstein J Nanotechnol; 2014; 5():507-16. PubMed ID: 24778977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective stiffness of qPlus sensor and quartz tuning fork.
    Kim J; Won D; Sung B; An S; Jhe W
    Ultramicroscopy; 2014 Jun; 141():56-62. PubMed ID: 24727200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spring constant of a tuning-fork sensor for dynamic force microscopy.
    van Vörden D; Lange M; Schmuck M; Schmidt N; Möller R
    Beilstein J Nanotechnol; 2012; 3():809-16. PubMed ID: 23365793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calibration of the oscillation amplitude of quartz tuning fork-based force sensors with astigmatic displacement microscopy.
    Zhang BQ; Ma FC; Xu JN; Ren DD; Zhou D; Pan T; Zhou L; Pu Q; Zeng ZC
    Rev Sci Instrum; 2024 Jan; 95(1):. PubMed ID: 38284812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical analysis of vibration modes of a qPlus sensor with a long tip.
    Chen K; Liu Z; Xie Y; Zhang C; Xu G; Song W; Xu K
    Beilstein J Nanotechnol; 2021; 12():82-92. PubMed ID: 33564605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple method for the determination of qPlus sensor spring constants.
    Melcher J; Stirling J; Shaw GA
    Beilstein J Nanotechnol; 2015; 6():1733-42. PubMed ID: 26425425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Responses of Electrically Driven Quartz Tuning Fork and qPlus Sensor: A Comprehensive Electromechanical Model for Quartz Tuning Fork.
    Lee M; Kim B; An S; Jhe W
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31207882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanically stable tuning fork sensor with high quality factor for the atomic force microscope.
    Kim K; Park JY; Kim KB; Lee N; Seo Y
    Scanning; 2014; 36(6):632-9. PubMed ID: 25229367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing qPlus sensor assemblies for simultaneous scanning tunneling and noncontact atomic force microscopy operation based on finite element method analysis.
    Dagdeviren OE; Schwarz UD
    Beilstein J Nanotechnol; 2017; 8():657-666. PubMed ID: 28462067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stiffness calibration of qPlus sensors at low temperature through thermal noise measurements.
    Nony L; Clair S; Uehli D; Herrero A; Themlin JM; Campos A; Para F; Pioda A; Loppacher C
    Beilstein J Nanotechnol; 2024; 15():580-602. PubMed ID: 38887532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calibrating conservative and dissipative response of electrically-driven quartz tuning forks.
    Hao L; Wang Q; Peng P; Cao Z; Jiao W; Yang F; Liu W; Wang R; He X
    Ultramicroscopy; 2017 Mar; 174():106-111. PubMed ID: 28068527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fundamental and higher eigenmodes of qPlus sensors with a long probe for vertical-lateral bimodal atomic force microscopy.
    Yamada Y; Ichii T; Utsunomiya T; Kimura K; Kobayashi K; Yamada H; Sugimura H
    Nanoscale Adv; 2023 Jan; 5(3):840-850. PubMed ID: 36756504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New fabrication technique for highly sensitive qPlus sensor with well-defined spring constant.
    Labidi H; Kupsta M; Huff T; Salomons M; Vick D; Taucer M; Pitters J; Wolkow RA
    Ultramicroscopy; 2015 Nov; 158():33-7. PubMed ID: 26117434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental analysis of tip vibrations at higher eigenmodes of QPlus sensors for atomic force microscopy.
    Ruppert MG; Martin-Jimenez D; Yong YK; Ihle A; Schirmeisen A; Fleming AJ; Ebeling D
    Nanotechnology; 2022 Feb; 33(18):. PubMed ID: 34972093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of quartz tuning fork force sensors used in scanning probe microscopy.
    Castellanos-Gomez A; Agraït N; Rubio-Bollinger G
    Nanotechnology; 2009 May; 20(21):215502. PubMed ID: 19423931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force-gradient-induced mechanical dissipation of quartz tuning fork force sensors used in atomic force microscopy.
    Castellanos-Gomez A; Agraït N; Rubio-Bollinger G
    Ultramicroscopy; 2011 Feb; 111(3):186-90. PubMed ID: 21333855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibration amplitude of a tip-loaded quartz tuning fork during shear force microscopy scanning.
    Sandoz P; Friedt JM; Carry E
    Rev Sci Instrum; 2008 Aug; 79(8):086102. PubMed ID: 19044383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring the interaction force between a tip and a substrate using a quartz tuning fork under ambient conditions.
    Qin Y; Reifenberger R
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3455-9. PubMed ID: 17252788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calibration of the oscillation amplitude of electrically excited scanning probe microscopy sensors.
    Dagdeviren OE; Miyahara Y; Mascaro A; Grütter P
    Rev Sci Instrum; 2019 Jan; 90(1):013703. PubMed ID: 30709205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The qPlus sensor, a powerful core for the atomic force microscope.
    Giessibl FJ
    Rev Sci Instrum; 2019 Jan; 90(1):011101. PubMed ID: 30709191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.