These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 24779125)

  • 1. Membrane oxygenator heat exchanger failure detected by unique blood gas findings.
    Hawkins JL
    J Extra Corpor Technol; 2014 Mar; 46(1):91-3. PubMed ID: 24779125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Method to Detect an Oxygenator Defect Prior to Cardiopulmonary Bypass Initiation.
    Fernandes A; Laliberte E; Toledano K; Demers P
    J Extra Corpor Technol; 2015 Sep; 47(3):180-2. PubMed ID: 26543253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-way valve malfunction in an extracorporeal membrane oxygenation priming circuit.
    Ellis WC; Butler K; Campbell D; Barrett C; Buckvold S
    J Extra Corpor Technol; 2014 Mar; 46(1):98-100. PubMed ID: 24779127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a preprimed microporous hollow-fiber membrane for rapid response neonatal extracorporeal membrane oxygenation.
    Walczak R; Lawson DS; Kaemmer D; McRobb C; McDermott P; Smigla G; Shearer I; Lodge A; Jaggers J
    Perfusion; 2005 Sep; 20(5):269-75. PubMed ID: 16231623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel wall water system for cardiopulmonary bypass may reduce the risk of aerosolized infection.
    Matte GS; Sandora TJ; Howe RJ; Regan WL; Potter-Bynoe G; Neal JR; Del Nido PJ
    J Thorac Cardiovasc Surg; 2018 Jul; 156(1):318-324. PubMed ID: 29615331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unrehearsed circuit failure during neonatal ECMO: critical trans-heat exchanger pressure.
    Henrick BM
    ASAIO J; 2006; 52(5):601-2. PubMed ID: 16966868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergency management of heat exchanger leak on cardiopulmonary bypass with hypothermia.
    Gukop P; Tiezzi A; Mattam K; Sarsam M
    Perfusion; 2015 Nov; 30(8):694-7. PubMed ID: 25870370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gas exchange efficiency of an oxygenator with integrated pulsatile displacement blood pump for neonatal patients.
    Schlanstein PC; Borchardt R; Mager I; Schmitz-Rode T; Steinseifer U; Arens J
    Int J Artif Organs; 2014 Jan; 37(1):88-92. PubMed ID: 24634337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A survey of membrane oxygenator heat-exchanger integrity testing at cardiac surgery centres in Great Britain and Ireland.
    Carlton M; Campbell J
    Int J Artif Organs; 2013 Nov; 36(11):758-61. PubMed ID: 24338650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The heater-cooler unit--a conceivable source of infection.
    Weitkemper HH; Spilker A; Knobl HJ; Körfer R
    J Extra Corpor Technol; 2002 Dec; 34(4):276-80. PubMed ID: 12533065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Testing of heat exchangers in membrane oxygenators using air pressure.
    Hamilton C; Stein J; Seidler R; Kind R; Beck K; Tosok J; Upterfofel J
    Perfusion; 2006 Mar; 21(2):105-7. PubMed ID: 16615688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical evaluation of the Admiral 1.35m2 hollow-fibre membrane oxygenator.
    Issitt R; Cumberland T; Clements A; Mulholland J
    Perfusion; 2008 Jan; 23(1):33-8. PubMed ID: 18788215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the Food and Drug Administration Manufacturer and User Facility Device Experience Database for Patient- and Circuit-Related Adverse Events Involving Extracorporeal Membrane Oxygenation.
    Khalid N; Javed H; Ahmad SA; Edelman JJ; Shlofmitz E; Chen Y; Musallam A; Rogers T; Hashim H; Bernardo NL; Waksman R
    Cardiovasc Revasc Med; 2020 Feb; 21(2):230-234. PubMed ID: 31767523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compact intra- and extracorporeal oxygenator developments.
    Cattaneo G; Strauss A; Reul H
    Perfusion; 2004 Jul; 19(4):251-5. PubMed ID: 15376770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential Deleterious Interactions between Certain Chemical Compounds and a Thermoplastic Polyurethane Heat Exchanger Membrane Oxygenator.
    Forsberg BC; Novick WM; Cervantes C; Lopez J; Cardarelli M
    J Extra Corpor Technol; 2018 Dec; 50(4):244-247. PubMed ID: 30581232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon Dioxide Flush of an Integrated Minimized Perfusion Circuit Prior to Priming Prevents Spontaneous Air Release Into the Arterial Line During Clinical Use.
    Stehouwer MC; de Vroege R; Hoohenkerk GJF; Hofman FN; Kelder JC; Buchner B; de Mol BA; Bruins P
    Artif Organs; 2017 Nov; 41(11):997-1003. PubMed ID: 28741663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can an oxygenator design potentially contribute to air embolism in cardiopulmonary bypass? A novel method for the determination of the air removal capabilities of neonatal membrane oxygenators.
    De Somer F; Dierickx P; Dujardin D; Verdonck P; Van Nooten G
    Perfusion; 1998 May; 13(3):157-63. PubMed ID: 9638712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A clinical evaluation of the Terumo Capiox SX18R hollow fiber oxygenator.
    Dekkers PA; Lawson DS; Smigla GR; Shearer IR
    J Extra Corpor Technol; 1995 Sep; 27(3):152-7. PubMed ID: 10155360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extended support with the Terumo Baby-RX oxygenator.
    Deptula JJ; Fogg SK; Glogowski KR; Fenton KN; Duncan KF
    J Extra Corpor Technol; 2004 Dec; 36(4):364-7. PubMed ID: 15679280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Successful management of membrane oxygenator failure during cardiopulmonary bypass--the importance of safety algorithm and simulation drills.
    Soo A; Booth K; Parissis H
    J Extra Corpor Technol; 2012 Jun; 44(2):78-80. PubMed ID: 22893988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.