These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 24779141)

  • 1. Buoyancy driven mixing of miscible fluids by volumetric energy deposition of microwaves.
    Wachtor AJ; Mocko V; Williams DJ; Goertz MP; Jebrail FF
    J Microw Power Electromagn Energy; 2013; 47(3):210-23. PubMed ID: 24779141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Turbulent transport and mixing in transitional Rayleigh-Taylor unstable flow: A priori assessment of gradient-diffusion and similarity modeling.
    Schilling O; Mueschke NJ
    Phys Rev E; 2017 Dec; 96(6-1):063111. PubMed ID: 29347290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fingering instability and mixing of a blob in porous media.
    Pramanik S; Mishra M
    Phys Rev E; 2016 Oct; 94(4-1):043106. PubMed ID: 27841573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confinement-induced stabilization of the Rayleigh-Taylor instability and transition to the unconfined limit.
    Alqatari S; Videbæk TE; Nagel SR; Hosoi AE; Bischofberger I
    Sci Adv; 2020 Nov; 6(47):. PubMed ID: 33208375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of monotone integrated large eddy simulation to Rayleigh-Taylor mixing.
    Youngs DL
    Philos Trans A Math Phys Eng Sci; 2009 Jul; 367(1899):2971-83. PubMed ID: 19531516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scalings of Rayleigh-Taylor Instability at Large Viscosity Contrasts in Porous Media.
    Sabet N; Hassanzadeh H; De Wit A; Abedi J
    Phys Rev Lett; 2021 Mar; 126(9):094501. PubMed ID: 33750169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supernova, nuclear synthesis, fluid instabilities, and interfacial mixing.
    Abarzhi SI; Bhowmick AK; Naveh A; Pandian A; Swisher NC; Stellingwerf RF; Arnett WD
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18184-18192. PubMed ID: 30478062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rayleigh-Taylor instabilities in reaction-diffusion systems inside Hele-Shaw cell modified by the action of temperature.
    García Casado G; Tofaletti L; Müller D; D'Onofrio A
    J Chem Phys; 2007 Mar; 126(11):114502. PubMed ID: 17381215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Onset of turbulence in accelerated high-Reynolds-number flow.
    Zhou Y; Robey HF; Buckingham AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056305. PubMed ID: 12786270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the classification of buoyancy-driven chemo-hydrodynamic instabilities of chemical fronts.
    D'Hernoncourt J; Zebib A; De Wit A
    Chaos; 2007 Mar; 17(1):013109. PubMed ID: 17411245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Buoyancy-Driven Flow through a Bed of Solid Particles Produces a New Form of Rayleigh-Taylor Turbulence.
    Sardina G; Brandt L; Boffetta G; Mazzino A
    Phys Rev Lett; 2018 Nov; 121(22):224501. PubMed ID: 30547608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rigorous buoyancy driven bubble mixing for centrifugal microfluidics.
    Burger S; Schulz M; von Stetten F; Zengerle R; Paust N
    Lab Chip; 2016 Jan; 16(2):261-8. PubMed ID: 26607320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Buoyancy-driven instability of an autocatalytic reaction front in a Hele-Shaw cell.
    Martin J; Rakotomalala N; Salin D; Böckmann M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051605. PubMed ID: 12059568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixing.
    Morgan BE; Schilling O; Hartland TA
    Phys Rev E; 2018 Jan; 97(1-1):013104. PubMed ID: 29448443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal mixing of two miscible fluids in a T-shaped microchannel.
    Xu B; Wong TN; Nguyen NT; Che Z; Chai JC
    Biomicrofluidics; 2010 Oct; 4(4):44102. PubMed ID: 20981238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical simulations of two-fluid turbulent mixing at large density ratios and applications to the Rayleigh-Taylor instability.
    Livescu D
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120185. PubMed ID: 24146007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and validation of a turbulent-mix model for variable-density and compressible flows.
    Banerjee A; Gore RA; Andrews MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046309. PubMed ID: 21230392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of experimental, theoretical, and numerical simulation Rayleigh-Taylor mixing rates.
    George E; Glimm J; Li XL; Marchese A; Xu ZL
    Proc Natl Acad Sci U S A; 2002 Mar; 99(5):2587-92. PubMed ID: 11854452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A CFD Digital Twin to Understand Miscible Fluid Blending.
    Thomas J; Sinha K; Shivkumar G; Cao L; Funck M; Shang S; Nere NK
    AAPS PharmSciTech; 2021 Mar; 22(3):91. PubMed ID: 33682032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Buoyancy-drag mix model obtained by multifluid interpenetration equations.
    Cheng B; Scannapieco AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046310. PubMed ID: 16383536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.