These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 24779227)

  • 1. Calorimetry study of microwave absorption of some solid materials.
    He CL; Ma SJ; Su XJ; Chen YQ; Liang YS
    J Microw Power Electromagn Energy; 2013; 47(4):251-61. PubMed ID: 24779227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of microwave energy for decontamination of oil polluted soils.
    Iordache D; Niculae D; Francisc IH
    J Microw Power Electromagn Energy; 2010; 44(4):213-21. PubMed ID: 21721470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of particle size and relative density on powdery Fe3O4 microwave heating.
    Hayashi M; Yokoyama Y; Nagata K
    J Microw Power Electromagn Energy; 2010; 44(4):198-206. PubMed ID: 21721468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dielectric properties of pharmaceutical materials relevant to microwave processing: effects of field frequency, material density, and moisture content.
    Heng PW; Loh ZH; Liew CV; Lee CC
    J Pharm Sci; 2010 Feb; 99(2):941-57. PubMed ID: 19708060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of measured microwave absorption and temperature change for development of a single-mode-type microwave heating thermogravimetry apparatus.
    Karisma AD; Hamaba T; Fukasawa T; Huang AN; Segawa T; Fukui K
    Rev Sci Instrum; 2017 Feb; 88(2):024101. PubMed ID: 28249523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of a microwave assisted vacuum drying process applied to the granulated pharmaceutical drug hydrochlorthiazide.
    Berteli MN; Marsaioli AJ; Rodier E
    J Microw Power Electromagn Energy; 2007; 40(4):241-50. PubMed ID: 17847678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon.
    Qiu X; Wang L; Zhu H; Guan Y; Zhang Q
    Nanoscale; 2017 Jun; 9(22):7408-7418. PubMed ID: 28540377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect on the grain size of single-mode microwave sintered NiCuZn ferrite and zinc titanate dielectric resonator ceramics.
    Sirugudu RK; Vemuri RK; Venkatachalam S; Gopalakrishnan A; Budaraju SM
    J Microw Power Electromagn Energy; 2011; 45(3):128-36. PubMed ID: 24427876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni-P coated tetrapod-shaped ZnO nano- and microstructures.
    Najim M; Modi G; Mishra YK; Adelung R; Singh D; Agarwala V
    Phys Chem Chem Phys; 2015 Sep; 17(35):22923-33. PubMed ID: 26267361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave spectra of mixtures of non-absorbing solid particles and absorbing liquids.
    Fletcher PD; Grice DD; Haswell SJ
    Phys Chem Chem Phys; 2009 Feb; 11(6):958-62. PubMed ID: 19177214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyrolysis, morphology and microwave absorption properties of tobacco stem materials.
    Zi W; Chen Y; Pan Y; Zhang Y; He Y; Wang Q
    Sci Total Environ; 2019 Sep; 683():341-350. PubMed ID: 31132713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiscale Assembly of Grape-Like Ferroferric Oxide and Carbon Nanotubes: A Smart Absorber Prototype Varying Temperature to Tune Intensities.
    Lu MM; Cao MS; Chen YH; Cao WQ; Liu J; Shi HL; Zhang DQ; Wang WZ; Yuan J
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):19408-15. PubMed ID: 26284741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on preparation and microwave absorption property of the core-nanoshell composite materials doped with La.
    Wei L; Che R; Jiang Y; Yu B
    J Environ Sci (China); 2013 Dec; 25 Suppl 1():S27-31. PubMed ID: 25078834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behaviour of Microwave-Heated Al
    Fujii T; Oshita A; Kashimura K
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34500967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable microwave absorption of switchable complexes operating near room temperature.
    Kucheriv OI; Oliynyk VV; Zagorodnii VV; Launets VL; Penkivska OV; Fritsky IO; Gural'skiy IA
    RSC Adv; 2020 Jun; 10(36):21621-21628. PubMed ID: 35518746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Application of microwave irradiation technology to the field of pharmaceutics].
    Zhang XB; Shi NQ; Yang ZQ; Wang XL
    Yao Xue Xue Bao; 2014 Mar; 49(3):303-9. PubMed ID: 24961099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on preparation of the core-nanoshell composite absorbers by high-energy ball milling at room temperature.
    Che R; Gao H; Yu B; Wang S; Wang C
    J Nanosci Nanotechnol; 2012 Feb; 12(2):1594-8. PubMed ID: 22630008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical Carbon Nanotube-Coated Carbon Fiber: Ultra Lightweight, Thin, and Highly Efficient Microwave Absorber.
    Singh SK; Akhtar MJ; Kar KK
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24816-24828. PubMed ID: 29973041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and microwave absorbing properties of the core-nanoshell composite absorbers with the magnetic fly-ash hollow cenosphere as core.
    Che R; Wang C; Ni Y; Yu B
    J Environ Sci (China); 2011 Jun; 23 Suppl():S74-7. PubMed ID: 25084599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microporous Co@C Nanoparticles Prepared by Dealloying CoAl@C Precursors: Achieving Strong Wideband Microwave Absorption via Controlling Carbon Shell Thickness.
    Li D; Liao H; Kikuchi H; Liu T
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44704-44714. PubMed ID: 29199817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.