BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 24779520)

  • 1. Phosphatase activity of the histidine kinases ensures pathway specificity of the ChrSA and HrrSA two-component systems in Corynebacterium glutamicum.
    Hentschel E; Mack C; Gätgens C; Bott M; Brocker M; Frunzke J
    Mol Microbiol; 2014 Jun; 92(6):1326-42. PubMed ID: 24779520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The two-component system ChrSA is crucial for haem tolerance and interferes with HrrSA in haem-dependent gene regulation in Corynebacterium glutamicum.
    Heyer A; Gätgens C; Hentschel E; Kalinowski J; Bott M; Frunzke J
    Microbiology (Reading); 2012 Dec; 158(Pt 12):3020-3031. PubMed ID: 23038807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ChrSA and HrrSA Two-Component Systems Are Required for Transcriptional Regulation of the hemA Promoter in Corynebacterium diphtheriae.
    Burgos JM; Schmitt MP
    J Bacteriol; 2016 Sep; 198(18):2419-30. PubMed ID: 27381918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxic but tasty - temporal dynamics and network architecture of heme-responsive two-component signaling in Corynebacterium glutamicum.
    Keppel M; Piepenbreier H; Gätgens C; Fritz G; Frunzke J
    Mol Microbiol; 2019 May; 111(5):1367-1381. PubMed ID: 30767351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ChrA-ChrS and HrrA-HrrS signal transduction systems are required for activation of the hmuO promoter and repression of the hemA promoter in Corynebacterium diphtheriae.
    Bibb LA; Kunkle CA; Schmitt MP
    Infect Immun; 2007 May; 75(5):2421-31. PubMed ID: 17353293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane Topology and Heme Binding of the Histidine Kinases HrrS and ChrS in
    Keppel M; Davoudi E; Gätgens C; Frunzke J
    Front Microbiol; 2018; 9():183. PubMed ID: 29479345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pseudokinase version of the histidine kinase ChrS promotes high heme tolerance of
    Krüger A; Frunzke J
    Front Microbiol; 2022; 13():997448. PubMed ID: 36160252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-component signal transduction in Corynebacterium glutamicum and other corynebacteria: on the way towards stimuli and targets.
    Bott M; Brocker M
    Appl Microbiol Biotechnol; 2012 Jun; 94(5):1131-50. PubMed ID: 22539022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The two-component signal transduction system CopRS of Corynebacterium glutamicum is required for adaptation to copper-excess stress.
    Schelder S; Zaade D; Litsanov B; Bott M; Brocker M
    PLoS One; 2011; 6(7):e22143. PubMed ID: 21799779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How important is the phosphatase activity of sensor kinases?
    Kenney LJ
    Curr Opin Microbiol; 2010 Apr; 13(2):168-76. PubMed ID: 20223700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro analysis of the two-component system MtrB-MtrA from Corynebacterium glutamicum.
    Möker N; Krämer J; Unden G; Krämer R; Morbach S
    J Bacteriol; 2007 May; 189(9):3645-9. PubMed ID: 17293417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of heme homeostasis in Corynebacterium glutamicum by the two-component system HrrSA.
    Frunzke J; Gätgens C; Brocker M; Bott M
    J Bacteriol; 2011 Mar; 193(5):1212-21. PubMed ID: 21217007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a HAD superfamily phosphatase, HdpA, involved in 1,3-dihydroxyacetone production during sugar catabolism in Corynebacterium glutamicum.
    Jojima T; Igari T; Gunji W; Suda M; Inui M; Yukawa H
    FEBS Lett; 2012 Nov; 586(23):4228-32. PubMed ID: 23108048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing cross-talk in vivo avoiding pitfalls and overinterpretation.
    Siryaporn A; Goulian M
    Methods Enzymol; 2010; 471():1-16. PubMed ID: 20946839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide regulated two-component signaling in Pseudoalteromonas atlantica.
    Arora DP; Boon EM
    Biochem Biophys Res Commun; 2012 May; 421(3):521-6. PubMed ID: 22521885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum.
    Brune I; Werner H; Hüser AT; Kalinowski J; Pühler A; Tauch A
    BMC Genomics; 2006 Feb; 7():21. PubMed ID: 16469103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specificity residues determine binding affinity for two-component signal transduction systems.
    Willett JW; Tiwari N; Müller S; Hummels KR; Houtman JC; Fuentes EJ; Kirby JR
    mBio; 2013 Nov; 4(6):e00420-13. PubMed ID: 24194534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycerol-3-phosphatase of Corynebacterium glutamicum.
    Lindner SN; Meiswinkel TM; Panhorst M; Youn JW; Wiefel L; Wendisch VF
    J Biotechnol; 2012 Jun; 159(3):216-24. PubMed ID: 22353596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cell envelope stress response mediated by the LiaFSRLm three-component system of Listeria monocytogenes is controlled via the phosphatase activity of the bifunctional histidine kinase LiaSLm.
    Fritsch F; Mauder N; Williams T; Weiser J; Oberle M; Beier D
    Microbiology (Reading); 2011 Feb; 157(Pt 2):373-386. PubMed ID: 21030435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Target genes and DNA-binding sites of the response regulator PhoR from Corynebacterium glutamicum.
    Schaaf S; Bott M
    J Bacteriol; 2007 Jul; 189(14):5002-11. PubMed ID: 17496102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.