BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24779579)

  • 21. Janus silver mesoporous silica nanobullets with synergistic antibacterial functions.
    Chang ZM; Wang Z; Lu MM; Shao D; Yue J; Yang D; Li MQ; Dong WF
    Colloids Surf B Biointerfaces; 2017 Sep; 157():199-206. PubMed ID: 28595136
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shape-dependent antibacterial activities of Ag2O polyhedral particles.
    Wang X; Wu HF; Kuang Q; Huang RB; Xie ZX; Zheng LS
    Langmuir; 2010 Feb; 26(4):2774-8. PubMed ID: 20141212
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ag-nanoparticle-loaded mesoporous silica: spontaneous formation of Ag nanoparticles and mesoporous silica SBA-15 by a one-pot strategy and their catalytic applications.
    Han J; Fang P; Jiang W; Li L; Guo R
    Langmuir; 2012 Mar; 28(10):4768-75. PubMed ID: 22339349
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanocomposite of Ag nanoparticles and catalytic fluorescent carbon dots for synergistic bactericidal activity through enhanced reactive oxygen species generation.
    Verma A; Shivalkar S; Sk MP; Samanta SK; Sahoo AK
    Nanotechnology; 2020 Oct; 31(40):405704. PubMed ID: 32498056
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phototherapeutic spectrum expansion through synergistic effect of mesoporous silica trio-nanohybrids against antibiotic-resistant gram-negative bacterium.
    Kuthati Y; Kankala RK; Busa P; Lin SX; Deng JP; Mou CY; Lee CH
    J Photochem Photobiol B; 2017 Apr; 169():124-133. PubMed ID: 28319867
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of the effects of mesoporous silica particles SBA-15 and SBA-16 in Streptococcus pneumoniae transformation process.
    Amstalden MK; Oliveira JD; Strauss M; Mazali IO; Machado D; Theisen TH; Lancellotti M
    Folia Microbiol (Praha); 2019 Jan; 64(1):127-132. PubMed ID: 30008055
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Molecular Mechanisms of the Antibacterial Effect of Picosecond Laser Generated Silver Nanoparticles and Their Toxicity to Human Cells.
    Korshed P; Li L; Liu Z; Wang T
    PLoS One; 2016; 11(8):e0160078. PubMed ID: 27575485
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced functional properties of biopolymer film incorporated with curcurmin-loaded mesoporous silica nanoparticles for food packaging.
    Wu C; Zhu Y; Wu T; Wang L; Yuan Y; Chen J; Hu Y; Pang J
    Food Chem; 2019 Aug; 288():139-145. PubMed ID: 30902273
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antibacterial mechanisms of a novel type picosecond laser-generated silver-titanium nanoparticles and their toxicity to human cells.
    Korshed P; Li L; Liu Z; Mironov A; Wang T
    Int J Nanomedicine; 2018; 13():89-101. PubMed ID: 29317818
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photo-Inspired Antibacterial Activity and Wound Healing Acceleration by Hydrogel Embedded with Ag/Ag@AgCl/ZnO Nanostructures.
    Mao C; Xiang Y; Liu X; Cui Z; Yang X; Yeung KWK; Pan H; Wang X; Chu PK; Wu S
    ACS Nano; 2017 Sep; 11(9):9010-9021. PubMed ID: 28825807
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synergistic photocatalytic inactivation mechanisms of bacteria by graphene sheets grafted plasmonic AgAgX (X = Cl, Br, I) composite photocatalyst under visible light irradiation.
    Xia D; An T; Li G; Wang W; Zhao H; Wong PK
    Water Res; 2016 Aug; 99():149-161. PubMed ID: 27155987
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insights into the antimicrobial mechanism of Ag and I incorporated ZnO nanoparticle derivatives under visible light.
    Karami A; Xie Z; Zhang J; Kabir MS; Munroe P; Kidd S; Zhang H
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110220. PubMed ID: 31761246
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic Mechanisms of the Bactericidal Action of an Al2O3-TiO2-Ag Granular Material on an Escherichia coli Strain.
    Tartanson MA; Soussan L; Rivallin M; Pecastaings S; Chis CV; Penaranda D; Roques C; Faur C
    Appl Environ Microbiol; 2015 Oct; 81(20):7135-42. PubMed ID: 26253665
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The formation mechanism of Ag/SBA-15 nanocomposites prepared via in-situ pH-adjusting method.
    Qu Z; Zhang X; Lv Y; Quan X; Fu Q
    J Nanosci Nanotechnol; 2013 Jul; 13(7):4573-80. PubMed ID: 23901476
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Switchable bactericidal effects from novel silica-coated silver nanoparticles mediated by light irradiation.
    Fuertes G; Sánchez-Muñoz OL; Pedrueza E; Abderrafi K; Salgado J; Jiménez E
    Langmuir; 2011 Mar; 27(6):2826-33. PubMed ID: 21306172
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydroxyapatite-supported Ag-TiO2 as Escherichia coli disinfection photocatalyst.
    Pratap Reddy M; Venugopal A; Subrahmanyam M
    Water Res; 2007 Jan; 41(2):379-86. PubMed ID: 17137613
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alkynyl silver modified chitosan and its potential applications in food area.
    Mei L; Jiang F; Zhang F; Zhang J; Li Y; Liu Y; Luo Y; Wang Q
    Carbohydr Polym; 2021 Feb; 254():117416. PubMed ID: 33357900
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In-situ reduction of monodisperse nanosilver on hierarchical wrinkled mesoporous silica with radial pore channels and its antibacterial performance.
    Wan X; Zhuang L; She B; Deng Y; Chen D; Tang J
    Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():323-30. PubMed ID: 27157758
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Superior disinfection effect of Escherichia coli by hydrothermal synthesized TiO
    Liu N; Zhu Q; Zhang N; Zhang C; Kawazoe N; Chen G; Negishi N; Yang Y
    Environ Pollut; 2019 Apr; 247():847-856. PubMed ID: 30731310
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antioxidant properties of probucol released from mesoporous silica.
    Lau M; Giri K; Garcia-Bennett AE
    Eur J Pharm Sci; 2019 Oct; 138():105038. PubMed ID: 31398394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.