These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 24779955)

  • 1. Prediction of high- and low-affinity quinol-analogue-binding sites in the aa3 and bo3 terminal oxidases from Bacillus subtilis and Escherichia coli1.
    Bossis F; De Grassi A; Palese LL; Pierri CL
    Biochem J; 2014 Jul; 461(2):305-14. PubMed ID: 24779955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular cloning, sequencing, and physiological characterization of the qox operon from Bacillus subtilis encoding the aa3-600 quinol oxidase.
    Santana M; Kunst F; Hullo MF; Rapoport G; Danchin A; Glaser P
    J Biol Chem; 1992 May; 267(15):10225-31. PubMed ID: 1316894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tryptophan-136 in subunit II of cytochrome bo3 from Escherichia coli may participate in the binding of ubiquinol.
    Ma J; Puustinen A; Wikström M; Gennis RB
    Biochemistry; 1998 Aug; 37(34):11806-11. PubMed ID: 9718303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of site-directed mutagenesis of protolytic residues in subunit I of Bacillus subtilis aa3-600 quinol oxidase. Role of lysine 304 in proton translocation.
    Villani G; Capitanio N; Bizzoca A; Palese LL; Carlino V; Tattoli M; Glaser P; Danchin A; Papa S
    Biochemistry; 1999 Feb; 38(8):2287-94. PubMed ID: 10029521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variants of the tetrahaem cytochrome c quinol dehydrogenase NrfH characterize the menaquinol-binding site, the haem c-binding motifs and the transmembrane segment.
    Kern M; Einsle O; Simon J
    Biochem J; 2008 Aug; 414(1):73-9. PubMed ID: 18439144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The proton pump of heme-copper oxidases.
    Papa S; Capitanio N; Glaser P; Villani G
    Cell Biol Int; 1994 May; 18(5):345-55. PubMed ID: 8049679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasticity in the High Affinity Menaquinone Binding Site of the Cytochrome aa3-600 Menaquinol Oxidase from Bacillus subtilis.
    Yi SM; Taguchi AT; Samoilova RI; O'Malley PJ; Gennis RB; Dikanov SA
    Biochemistry; 2015 Aug; 54(32):5030-44. PubMed ID: 26196462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic studies of metal binding and metal selectivity in Bacillus subtilis BSco, a Homologue of the Yeast Mitochondrial Protein Sco1p.
    Andruzzi L; Nakano M; Nilges MJ; Blackburn NJ
    J Am Chem Soc; 2005 Nov; 127(47):16548-58. PubMed ID: 16305244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyanide-insensitive quinol oxidase (CIO) from Gluconobacter oxydans is a unique terminal oxidase subfamily of cytochrome bd.
    Miura H; Mogi T; Ano Y; Migita CT; Matsutani M; Yakushi T; Kita K; Matsushita K
    J Biochem; 2013 Jun; 153(6):535-45. PubMed ID: 23526305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional analysis of subunits III and IV of Bacillus subtilis aa3-600 quinol oxidase by in vitro mutagenesis and gene replacement.
    Villani G; Tattoli M; Capitanio N; Glaser P; Papa S; Danchin A
    Biochim Biophys Acta; 1995 Nov; 1232(1-2):67-74. PubMed ID: 7495838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Respiratory oxidases: the enzymes which use most of the oxygen which living things breathe].
    Toledo-Cuevas EM
    Rev Latinoam Microbiol; 1997; 39(3-4):167-86. PubMed ID: 10932727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Escherichia coli MFS-type transporter genes yhjE, ydiM, and yfcJ are required to produce an active bo3 quinol oxidase.
    Khalfaoui-Hassani B; Blaby-Haas CE; Verissimo A; Daldal F
    PLoS One; 2023; 18(10):e0293015. PubMed ID: 37862358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and catalytic properties of CMP kinase from Bacillus subtilis: a comparative analysis with the homologous enzyme from Escherichia coli.
    Schultz CP; Ylisastigui-Pons L; Serina L; Sakamoto H; Mantsch HH; Neuhard J; Bârzu O; Gilles AM
    Arch Biochem Biophys; 1997 Apr; 340(1):144-53. PubMed ID: 9126287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the binuclear heme iron-copper site in the quinol-oxidizing cytochrome aa3 from Bacillus subtilis.
    Powers L; Lauraeus M; Reddy KS; Chance B; Wikström M
    Biochim Biophys Acta; 1994 Jan; 1183(3):504-12. PubMed ID: 8286399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel double heme substitution produces a functional bo3 variant of the quinol oxidase aa3 of Bacillus cereus. Purification and paratial characterization.
    Contreras-Zentella M; Mendoza G; Membrillo-Hernández J; Escamilla JE
    J Biol Chem; 2003 Aug; 278(34):31473-8. PubMed ID: 12805383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transmembrane topology and axial ligands to hemes in the cytochrome b subunit of Bacillus subtilis succinate:menaquinone reductase.
    Hägerhäll C; Fridén H; Aasa R; Hederstedt L
    Biochemistry; 1995 Sep; 34(35):11080-9. PubMed ID: 7669765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of the cavity-binding site of three bacterial multicopper oxidases upon complex stabilization: interactional profile and electron transference pathways.
    Bello M; Correa-Basurto J; Rudiño-Piñera E
    J Biomol Struct Dyn; 2014; 32(8):1303-17. PubMed ID: 23859715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-yield purification of cytochrome aa3 and cytochrome caa3 oxidases from Bacillus subtilis plasma membranes.
    Henning W; Vo L; Albanese J; Hill BC
    Biochem J; 1995 Jul; 309 ( Pt 1)(Pt 1):279-83. PubMed ID: 7619069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptidyl-prolyl cis-trans isomerase of Bacillus subtilis: identification of residues involved in cyclosporin A affinity and catalytic efficiency.
    Göthel SF; Herrler M; Marahiel MA
    Biochemistry; 1996 Mar; 35(11):3636-40. PubMed ID: 8639516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of two terminal oxidases in Bacillus brevis and efficiency of energy conservation of the respiratory chain.
    Yaginuma A; Tsukita S; Sakamoto J; Sone N
    J Biochem; 1997 Nov; 122(5):969-76. PubMed ID: 9443812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.