These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24780064)

  • 41. Optimizing RNA-Seq Mapping with STAR.
    Dobin A; Gingeras TR
    Methods Mol Biol; 2016; 1415():245-62. PubMed ID: 27115637
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transcriptome analysis of thermophilic methylotrophic Bacillus methanolicus MGA3 using RNA-sequencing provides detailed insights into its previously uncharted transcriptional landscape.
    Irla M; Neshat A; Brautaset T; Rückert C; Kalinowski J; Wendisch VF
    BMC Genomics; 2015 Feb; 16(1):73. PubMed ID: 25758049
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Salmon provides fast and bias-aware quantification of transcript expression.
    Patro R; Duggal G; Love MI; Irizarry RA; Kingsford C
    Nat Methods; 2017 Apr; 14(4):417-419. PubMed ID: 28263959
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Complete genome sequence and annotation of the laboratory reference strain Shigella flexneri serotype 5a M90T and genome-wide transcriptional start site determination.
    Cervantes-Rivera R; Tronnet S; Puhar A
    BMC Genomics; 2020 Apr; 21(1):285. PubMed ID: 32252626
    [TBL] [Abstract][Full Text] [Related]  

  • 45. FDM: a graph-based statistical method to detect differential transcription using RNA-seq data.
    Singh D; Orellana CF; Hu Y; Jones CD; Liu Y; Chiang DY; Liu J; Prins JF
    Bioinformatics; 2011 Oct; 27(19):2633-40. PubMed ID: 21824971
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Global transcriptional start site mapping using differential RNA sequencing reveals novel antisense RNAs in Escherichia coli.
    Thomason MK; Bischler T; Eisenbart SK; Förstner KU; Zhang A; Herbig A; Nieselt K; Sharma CM; Storz G
    J Bacteriol; 2015 Jan; 197(1):18-28. PubMed ID: 25266388
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Conserved and specific features of Streptococcus pyogenes and Streptococcus agalactiae transcriptional landscapes.
    Rosinski-Chupin I; Sauvage E; Fouet A; Poyart C; Glaser P
    BMC Genomics; 2019 Mar; 20(1):236. PubMed ID: 30902048
    [TBL] [Abstract][Full Text] [Related]  

  • 48. EpiNano: Detection of m
    Liu H; Begik O; Novoa EM
    Methods Mol Biol; 2021; 2298():31-52. PubMed ID: 34085237
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The transcriptional landscape of the yeast genome defined by RNA sequencing.
    Nagalakshmi U; Wang Z; Waern K; Shou C; Raha D; Gerstein M; Snyder M
    Science; 2008 Jun; 320(5881):1344-9. PubMed ID: 18451266
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Empirical assessment of analysis workflows for differential expression analysis of human samples using RNA-Seq.
    Williams CR; Baccarella A; Parrish JZ; Kim CC
    BMC Bioinformatics; 2017 Jan; 18(1):38. PubMed ID: 28095772
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A systematic comparison and evaluation of high density exon arrays and RNA-seq technology used to unravel the peripheral blood transcriptome of sickle cell disease.
    Raghavachari N; Barb J; Yang Y; Liu P; Woodhouse K; Levy D; O'Donnell CJ; Munson PJ; Kato GJ
    BMC Med Genomics; 2012 Jun; 5():28. PubMed ID: 22747986
    [TBL] [Abstract][Full Text] [Related]  

  • 52. RNA-seq analysis of the C. briggsae transcriptome.
    Uyar B; Chu JS; Vergara IA; Chua SY; Jones MR; Wong T; Baillie DL; Chen N
    Genome Res; 2012 Aug; 22(8):1567-80. PubMed ID: 22772596
    [TBL] [Abstract][Full Text] [Related]  

  • 53. GIIRA--RNA-Seq driven gene finding incorporating ambiguous reads.
    Zickmann F; Lindner MS; Renard BY
    Bioinformatics; 2014 Mar; 30(5):606-13. PubMed ID: 24123675
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Measuring differential gene expression with RNA-seq: challenges and strategies for data analysis.
    Finotello F; Di Camillo B
    Brief Funct Genomics; 2015 Mar; 14(2):130-42. PubMed ID: 25240000
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Performance evaluation of lossy quality compression algorithms for RNA-seq data.
    Yu R; Yang W; Wang S
    BMC Bioinformatics; 2020 Jul; 21(1):321. PubMed ID: 32689929
    [TBL] [Abstract][Full Text] [Related]  

  • 56. If it transcribes, we can sequence it: mining the complexities of host-pathogen-environment interactions using RNA-seq.
    Colgan AM; Cameron AD; Kröger C
    Curr Opin Microbiol; 2017 Apr; 36():37-46. PubMed ID: 28189909
    [TBL] [Abstract][Full Text] [Related]  

  • 57. RNA-Seq of Bacillus licheniformis: active regulatory RNA features expressed within a productive fermentation.
    Wiegand S; Dietrich S; Hertel R; Bongaerts J; Evers S; Volland S; Daniel R; Liesegang H
    BMC Genomics; 2013 Oct; 14():667. PubMed ID: 24079885
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads.
    Martin J; Bruno VM; Fang Z; Meng X; Blow M; Zhang T; Sherlock G; Snyder M; Wang Z
    BMC Genomics; 2010 Nov; 11():663. PubMed ID: 21106091
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A differential k-mer analysis pipeline for comparing RNA-Seq transcriptome and meta-transcriptome datasets without a reference.
    Chan CK; Rosic N; Lorenc MT; Visendi P; Lin M; Kaniewska P; Ferguson BJ; Gresshoff PM; Batley J; Edwards D
    Funct Integr Genomics; 2019 Mar; 19(2):363-371. PubMed ID: 30483906
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Unprecedented high-resolution view of bacterial operon architecture revealed by RNA sequencing.
    Conway T; Creecy JP; Maddox SM; Grissom JE; Conkle TL; Shadid TM; Teramoto J; San Miguel P; Shimada T; Ishihama A; Mori H; Wanner BL
    mBio; 2014 Jul; 5(4):e01442-14. PubMed ID: 25006232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.