These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24780312)

  • 1. microRNAs control of in vivo toxicity from graphene oxide in Caenorhabditis elegans.
    Wu Q; Zhao Y; Zhao G; Wang D
    Nanomedicine; 2014 Oct; 10(7):1401-10. PubMed ID: 24780312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response of microRNAs to in vitro treatment with graphene oxide.
    Li Y; Wu Q; Zhao Y; Bai Y; Chen P; Xia T; Wang D
    ACS Nano; 2014 Mar; 8(3):2100-10. PubMed ID: 24512264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycyrrhizic acid, active component from Glycyrrhizae radix, prevents toxicity of graphene oxide by influencing functions of microRNAs in nematode Caenorhabditis elegans.
    Zhao Y; Jia R; Qiao Y; Wang D
    Nanomedicine; 2016 Apr; 12(3):735-744. PubMed ID: 26552872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide identification and functional analysis of long noncoding RNAs involved in the response to graphene oxide.
    Wu Q; Zhou X; Han X; Zhuo Y; Zhu S; Zhao Y; Wang D
    Biomaterials; 2016 Sep; 102():277-91. PubMed ID: 27348851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular signals regulating translocation and toxicity of graphene oxide in the nematode Caenorhabditis elegans.
    Wu Q; Zhao Y; Li Y; Wang D
    Nanoscale; 2014 Oct; 6(19):11204-12. PubMed ID: 25124895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. p38 MAPK-SKN-1/Nrf signaling cascade is required for intestinal barrier against graphene oxide toxicity in Caenorhabditis elegans.
    Zhao Y; Zhi L; Wu Q; Yu Y; Sun Q; Wang D
    Nanotoxicology; 2016 Dec; 10(10):1469-1479. PubMed ID: 27615004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mir-231-Regulated Protection Mechanism against the Toxicity of Graphene Oxide in Nematode Caenorhabditis elegans.
    Yang R; Ren M; Rui Q; Wang D
    Sci Rep; 2016 Aug; 6():32214. PubMed ID: 27558892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A systems toxicology approach reveals the Wnt-MAPK crosstalk pathway mediated reproductive failure in Caenorhabditis elegans exposed to graphene oxide (GO) but not to reduced graphene oxide (rGO).
    Chatterjee N; Kim Y; Yang J; Roca CP; Joo SW; Choi J
    Nanotoxicology; 2017 Feb; 11(1):76-86. PubMed ID: 27901397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wnt Ligands Differentially Regulate Toxicity and Translocation of Graphene Oxide through Different Mechanisms in Caenorhabditis elegans.
    Zhi L; Ren M; Qu M; Zhang H; Wang D
    Sci Rep; 2016 Dec; 6():39261. PubMed ID: 27958363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An epigenetic signal encoded protection mechanism is activated by graphene oxide to inhibit its induced reproductive toxicity in Caenorhabditis elegans.
    Zhao Y; Wu Q; Wang D
    Biomaterials; 2016 Feb; 79():15-24. PubMed ID: 26686978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal ERK signaling in response to graphene oxide in nematode Caenorhabditis elegans.
    Qu M; Li Y; Wu Q; Xia Y; Wang D
    Nanotoxicology; 2017 May; 11(4):520-533. PubMed ID: 28368775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immune response is required for the control of in vivo translocation and chronic toxicity of graphene oxide.
    Wu Q; Zhao Y; Fang J; Wang D
    Nanoscale; 2014 Jun; 6(11):5894-906. PubMed ID: 24756229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term exposure to thiolated graphene oxide in the range of μg/L induces toxicity in nematode Caenorhabditis elegans.
    Ding X; Wang J; Rui Q; Wang D
    Sci Total Environ; 2018 Mar; 616-617():29-37. PubMed ID: 29107776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions of altered permeability of intestinal barrier and defecation behavior to toxicity formation from graphene oxide in nematode Caenorhabditis elegans.
    Wu Q; Yin L; Li X; Tang M; Zhang T; Wang D
    Nanoscale; 2013 Oct; 5(20):9934-43. PubMed ID: 23986404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dysregulation of Neuronal Gαo Signaling by Graphene Oxide in Nematode Caenorhabditis elegans.
    Liu P; Shao H; Ding X; Yang R; Rui Q; Wang D
    Sci Rep; 2019 Apr; 9(1):6026. PubMed ID: 30988375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimicrobial proteins in the response to graphene oxide in Caenorhabditis elegans.
    Ren M; Zhao L; Lv X; Wang D
    Nanotoxicology; 2017 May; 11(4):578-590. PubMed ID: 28490217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of graphene oxide exposure on intestinal Wnt signaling in nematode Caenorhabditis elegans.
    Liu P; Shao H; Kong Y; Wang D
    J Environ Sci (China); 2020 Feb; 88():200-208. PubMed ID: 31862061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The C. elegans miR-235 regulates the toxicity of graphene oxide via targeting the nuclear hormone receptor DAF-12 in the intestine.
    Guo T; Cheng L; Zhao H; Liu Y; Yang Y; Liu J; Wu Q
    Sci Rep; 2020 Oct; 10(1):16933. PubMed ID: 33037257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional disruption in epidermal barrier enhances toxicity and accumulation of graphene oxide.
    Ding X; Rui Q; Wang D
    Ecotoxicol Environ Saf; 2018 Nov; 163():456-464. PubMed ID: 30075448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental basis for intestinal barrier against the toxicity of graphene oxide.
    Ren M; Zhao L; Ding X; Krasteva N; Rui Q; Wang D
    Part Fibre Toxicol; 2018 Jun; 15(1):26. PubMed ID: 29929559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.