These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 24780528)

  • 21. Modelling interacting plant and livestock renewal dynamics helps disentangle equilibrium and nonequilibrium aspects in a Mongolian pastoral system.
    Joly F; Sabatier R; Hubert B
    Sci Total Environ; 2018 Jun; 625():1390-1404. PubMed ID: 29996436
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Loss of density dependence underpins decoupling of livestock population and plant biomass in intensive grazing systems.
    Li A; Chen S
    Ecol Appl; 2021 Dec; 31(8):e02450. PubMed ID: 34515410
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting the Effects of Woody Encroachment on Mammal Communities, Grazing Biomass and Fire Frequency in African Savannas.
    Smit IP; Prins HH
    PLoS One; 2015; 10(9):e0137857. PubMed ID: 26379249
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling rangelands as spatially-explicit complex adaptive systems.
    Wang HH; Grant WE; Teague R
    J Environ Manage; 2020 Sep; 269():110762. PubMed ID: 32560990
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparisons of pastoralists perceptions about rangeland resource utilisation in the Middle Awash Valley of Ethiopia.
    Abule E; Snyman HA; Smit GN
    J Environ Manage; 2005 Apr; 75(1):21-35. PubMed ID: 15748801
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Patterns of rangeland productivity and land ownership: Implications for conservation and management.
    Robinson NP; Allred BW; Naugle DE; Jones MO
    Ecol Appl; 2019 Apr; 29(3):e01862. PubMed ID: 30706573
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long-term livestock exclusion facilitates native woody plant encroachment in a sandy semiarid rangeland.
    Su H; Liu W; Xu H; Wang Z; Zhang H; Hu H; Li Y
    Ecol Evol; 2015 Jun; 5(12):2445-56. PubMed ID: 26120433
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessing the impacts of livestock production on biodiversity in rangeland ecosystems.
    Alkemade R; Reid RS; van den Berg M; de Leeuw J; Jeuken M
    Proc Natl Acad Sci U S A; 2013 Dec; 110(52):20900-5. PubMed ID: 22308313
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pastoralists' responses to variation of rangeland resources in time and space.
    McAllister RR; Gordon IJ; Janssen MA; Abel N
    Ecol Appl; 2006 Apr; 16(2):572-83. PubMed ID: 16711045
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simulation of vegetation dynamics and management strategies on south Texas, semi-arid rangeland.
    Glasscock SN; Grant WE; Drawe DL
    J Environ Manage; 2005 Jun; 75(4):379-97. PubMed ID: 15854730
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Perceptions of ranchers about medusahead (Taeniatherum caput-medusae (L.) Nevski) management on sagebrush steppe rangelands.
    Johnson DD; Davies KW; Schreder PT; Chamberlain AM
    Environ Manage; 2011 Sep; 48(3):400-17. PubMed ID: 21706381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessing transhumance corridors on high mountain environments by least cost path analysis: the case of yak herds in Gilgit-Baltistan, Pakistan.
    Hashmi MM; Frate L; Nizami SM; Carranza ML
    Environ Monit Assess; 2017 Sep; 189(10):488. PubMed ID: 28884253
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Climate change impacts on selected global rangeland ecosystem services.
    Boone RB; Conant RT; Sircely J; Thornton PK; Herrero M
    Glob Chang Biol; 2018 Mar; 24(3):1382-1393. PubMed ID: 29160927
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessing optimal configurations of multi-paddock grazing strategies in tallgrass prairie using a simulation model.
    Teague R; Grant B; Wang HH
    J Environ Manage; 2015 Mar; 150():262-273. PubMed ID: 25527985
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Natural ecosystem mimicry in traditional dryland agroecosystems: Insights from an empirical and holistic approach.
    Blanco J; Michon G; Carrière SM
    J Environ Manage; 2017 Dec; 204(Pt 1):111-122. PubMed ID: 28865306
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Annual changes in biomass amount and feeding potential of shrubby rangelands in maquis formation.
    Alatürk F; Hanoğlu Oral H; Gökkuş A; Ali B
    PeerJ; 2023; 11():e15204. PubMed ID: 37123014
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pathways of degradation in rangelands in Northern Tanzania show their loss of resistance, but potential for recovery.
    Wiethase JH; Critchlow R; Foley C; Foley L; Kinsey EJ; Bergman BG; Osujaki B; Mbwambo Z; Kirway PB; Redeker KR; Hartley SE; Beale CM
    Sci Rep; 2023 Feb; 13(1):2417. PubMed ID: 36813819
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Global effectiveness of group decision-making strategies in coping with forage and price variabilities in commercial rangelands: A modelling assessment.
    Ibáñez J; Martínez-Valderrama J
    J Environ Manage; 2018 Jul; 217():531-541. PubMed ID: 29631242
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Native plant resources to optimize the performances of forest rehabilitation in Mediterranean and tropical environment: some examples of nursing plant species that improve the soil mycorrhizal potential].
    Duponnois R; Ramanankierana H; Hafidi M; Baohanta R; Baudoin E; Thioulouse J; Sanguin H; Bâ A; Galiana A; Bally R; Lebrun M; Prin Y
    C R Biol; 2013; 336(5-6):265-72. PubMed ID: 23916201
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Doomed to collapse: Why Algerian steppe rangelands are overgrazed and some lessons to help land-use transitions.
    Martínez-Valderrama J; Ibáñez J; Del Barrio G; Alcalá FJ; Sanjuán ME; Ruiz A; Hirche A; Puigdefábregas J
    Sci Total Environ; 2018 Feb; 613-614():1489-1497. PubMed ID: 28802894
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.