BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 24780583)

  • 1. Low resolution X-ray structure of γ-glutamyltranspeptidase from Bacillus licheniformis: opened active site cleft and a cluster of acid residues potentially involved in the recognition of a metal ion.
    Lin LL; Chen YY; Chi MC; Merlino A
    Biochim Biophys Acta; 2014 Sep; 1844(9):1523-9. PubMed ID: 24780583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of Bacillus subtilis γ-glutamyltranspeptidase in complex with acivicin: diversity of the binding mode of a classical and electrophilic active-site-directed glutamate analogue.
    Ida T; Suzuki H; Fukuyama K; Hiratake J; Wada K
    Acta Crystallogr D Biol Crystallogr; 2014 Feb; 70(Pt 2):607-14. PubMed ID: 24531494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures of gamma-glutamyltranspeptidase from Escherichia coli, a key enzyme in glutathione metabolism, and its reaction intermediate.
    Okada T; Suzuki H; Wada K; Kumagai H; Fukuyama K
    Proc Natl Acad Sci U S A; 2006 Apr; 103(17):6471-6. PubMed ID: 16618936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase.
    Harris TK; Wu G; Massiah MA; Mildvan AS
    Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression, one-step purification, and biochemical characterization of a recombinant gamma-glutamyltranspeptidase from Bacillus licheniformis.
    Lin LL; Chou PR; Hua YW; Hsu WH
    Appl Microbiol Biotechnol; 2006 Nov; 73(1):103-12. PubMed ID: 16850301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Helicobacter pylori gamma-glutamyltranspeptidase reveals the molecular basis for substrate specificity and a critical role for the tyrosine 433-containing loop in catalysis.
    Morrow AL; Williams K; Sand A; Boanca G; Barycki JJ
    Biochemistry; 2007 Nov; 46(46):13407-14. PubMed ID: 17960917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mutant Bacillus subtilis gamma-glutamyltranspeptidase specialized in hydrolysis activity.
    Minami H; Suzuki H; Kumagai H
    FEMS Microbiol Lett; 2003 Jul; 224(2):169-73. PubMed ID: 12892879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of catalytic nucleophile of Escherichia coli gamma-glutamyltranspeptidase by gamma-monofluorophosphono derivative of glutamic acid: N-terminal thr-391 in small subunit is the nucleophile.
    Inoue M; Hiratake J; Suzuki H; Kumagai H; Sakata K
    Biochemistry; 2000 Jul; 39(26):7764-71. PubMed ID: 10869181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and properties of two isozymes of gamma-glutamyltranspeptidase from Bacillus subtilis TAM-4.
    Abe K; Ito Y; Ohmachi T; Asada Y
    Biosci Biotechnol Biochem; 1997 Oct; 61(10):1621-5. PubMed ID: 9362111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncoupling the enzymatic and autoprocessing activities of Helicobacter pylori gamma-glutamyltranspeptidase.
    Boanca G; Sand A; Barycki JJ
    J Biol Chem; 2006 Jul; 281(28):19029-37. PubMed ID: 16672227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structural basis for unidirectional rotation of thermoalkaliphilic F1-ATPase.
    Stocker A; Keis S; Vonck J; Cook GM; Dimroth P
    Structure; 2007 Aug; 15(8):904-14. PubMed ID: 17697996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and properties of gamma-glutamyltranspeptidase from Bacillus subtilis (natto).
    Ogawa Y; Hosoyama H; Hamano M; Motai H
    Agric Biol Chem; 1991 Dec; 55(12):2971-7. PubMed ID: 1371053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of the gamma-glutamyltranspeptidase precursor protein from Escherichia coli. Structural changes upon autocatalytic processing and implications for the maturation mechanism.
    Okada T; Suzuki H; Wada K; Kumagai H; Fukuyama K
    J Biol Chem; 2007 Jan; 282(4):2433-9. PubMed ID: 17135273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutational analysis of catalytic sites of the cell wall lytic N-acetylmuramoyl-L-alanine amidases CwlC and CwlV.
    Shida T; Hattori H; Ise F; Sekiguchi J
    J Biol Chem; 2001 Jul; 276(30):28140-6. PubMed ID: 11375403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of active site mutations on the metal binding affinity, catalytic competence, and stability of the family II pyrophosphatase from Bacillus subtilis.
    Halonen P; Tammenkoski M; Niiranen L; Huopalahti S; Parfenyev AN; Goldman A; Baykov A; Lahti R
    Biochemistry; 2005 Mar; 44(10):4004-10. PubMed ID: 15751976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A catalytic mechanism revealed by the crystal structures of the imidazolonepropionase from Bacillus subtilis.
    Yu Y; Liang YH; Brostromer E; Quan JM; Panjikar S; Dong YH; Su XD
    J Biol Chem; 2006 Dec; 281(48):36929-36. PubMed ID: 16990261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autoprocessing of Helicobacter pylori gamma-glutamyltranspeptidase leads to the formation of a threonine-threonine catalytic dyad.
    Boanca G; Sand A; Okada T; Suzuki H; Kumagai H; Fukuyama K; Barycki JJ
    J Biol Chem; 2007 Jan; 282(1):534-41. PubMed ID: 17107958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of metal ion binding in phosphonoacetaldehyde hydrolase identifies sequence markers for metal-activated enzymes of the HAD enzyme superfamily.
    Zhang G; Morais MC; Dai J; Zhang W; Dunaway-Mariano D; Allen KN
    Biochemistry; 2004 May; 43(17):4990-7. PubMed ID: 15109258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of glutamate residues important for catalytic activity or thermostability of a truncated Bacillus sp. strain TS-23 alpha-amylase by site-directed mutagenesis.
    Lin LL; Chen PJ; Liu JS; Wang WC; Lo HF
    Protein J; 2006 Apr; 25(3):232-9. PubMed ID: 16703471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional and structural changes due to a serine to alanine mutation in the active-site flap of enolase.
    Poyner RR; Larsen TM; Wong SW; Reed GH
    Arch Biochem Biophys; 2002 May; 401(2):155-63. PubMed ID: 12054465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.