These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 24780696)
1. Robust, accurate and fast automatic segmentation of the spinal cord. De Leener B; Kadoury S; Cohen-Adad J Neuroimage; 2014 Sep; 98():528-36. PubMed ID: 24780696 [TBL] [Abstract][Full Text] [Related]
2. Automatic Segmentation of the Spinal Cord and Spinal Canal Coupled With Vertebral Labeling. De Leener B; Cohen-Adad J; Kadoury S IEEE Trans Med Imaging; 2015 Aug; 34(8):1705-18. PubMed ID: 26011879 [TBL] [Abstract][Full Text] [Related]
3. Fully-integrated framework for the segmentation and registration of the spinal cord white and gray matter. Dupont SM; De Leener B; Taso M; Le Troter A; Nadeau S; Stikov N; Callot V; Cohen-Adad J Neuroimage; 2017 Apr; 150():358-372. PubMed ID: 27663988 [TBL] [Abstract][Full Text] [Related]
4. Morphological active contour driven by local and global intensity fitting for spinal cord segmentation from MR images. Fouladivanda M; Kazemi K; Helfroush MS; Shakibafard A J Neurosci Methods; 2018 Oct; 308():116-128. PubMed ID: 30036546 [TBL] [Abstract][Full Text] [Related]
6. A reliable spatially normalized template of the human spinal cord--Applications to automated white matter/gray matter segmentation and tensor-based morphometry (TBM) mapping of gray matter alterations occurring with age. Taso M; Le Troter A; Sdika M; Cohen-Adad J; Arnoux PJ; Guye M; Ranjeva JP; Callot V Neuroimage; 2015 Aug; 117():20-8. PubMed ID: 26003856 [TBL] [Abstract][Full Text] [Related]
7. Automatic spinal cord localization, robust to MRI contrasts using global curve optimization. Gros C; De Leener B; Dupont SM; Martin AR; Fehlings MG; Bakshi R; Tummala S; Auclair V; McLaren DG; Callot V; Cohen-Adad J; Sdika M Med Image Anal; 2018 Feb; 44():215-227. PubMed ID: 29288983 [TBL] [Abstract][Full Text] [Related]
8. Gray matter segmentation of the spinal cord with active contours in MR images. Datta E; Papinutto N; Schlaeger R; Zhu A; Carballido-Gamio J; Henry RG Neuroimage; 2017 Feb; 147():788-799. PubMed ID: 27495383 [TBL] [Abstract][Full Text] [Related]
9. Validation of a semiautomated spinal cord segmentation method. El Mendili MM; Chen R; Tiret B; Pélégrini-Issac M; Cohen-Adad J; Lehéricy S; Pradat PF; Benali H J Magn Reson Imaging; 2015 Feb; 41(2):454-9. PubMed ID: 24436309 [TBL] [Abstract][Full Text] [Related]
10. Automatic Spinal Cord Gray Matter Quantification: A Novel Approach. Tsagkas C; Horvath A; Altermatt A; Pezold S; Weigel M; Haas T; Amann M; Kappos L; Sprenger T; Bieri O; Cattin P; Parmar K AJNR Am J Neuroradiol; 2019 Sep; 40(9):1592-1600. PubMed ID: 31439628 [TBL] [Abstract][Full Text] [Related]
11. Spinal Cord Segmentation by One Dimensional Normalized Template Matching: A Novel, Quantitative Technique to Analyze Advanced Magnetic Resonance Imaging Data. Cadotte A; Cadotte DW; Livne M; Cohen-Adad J; Fleet D; Mikulis D; Fehlings MG PLoS One; 2015; 10(10):e0139323. PubMed ID: 26445367 [TBL] [Abstract][Full Text] [Related]
12. Reduced field-of-view DTI segmentation of cervical spine tissue. Tang L; Wen Y; Zhou Z; von Deneen KM; Huang D; Ma L Magn Reson Imaging; 2013 Nov; 31(9):1507-14. PubMed ID: 23993792 [TBL] [Abstract][Full Text] [Related]
13. Fully automatic 3D segmentation of the thoracolumbar spinal cord and the vertebral canal from T2-weighted MRI using K-means clustering algorithm. Sabaghian S; Dehghani H; Batouli SAH; Khatibi A; Oghabian MA Spinal Cord; 2020 Jul; 58(7):811-820. PubMed ID: 32132652 [TBL] [Abstract][Full Text] [Related]
14. Automatic magnetic resonance spinal cord segmentation with topology constraints for variable fields of view. Chen M; Carass A; Oh J; Nair G; Pham DL; Reich DS; Prince JL Neuroimage; 2013 Dec; 83():1051-62. PubMed ID: 23927903 [TBL] [Abstract][Full Text] [Related]
15. Fast and accurate semi-automated segmentation method of spinal cord MR images at 3T applied to the construction of a cervical spinal cord template. El Mendili MM; Chen R; Tiret B; Villard N; Trunet S; Pélégrini-Issac M; Lehéricy S; Pradat PF; Benali H PLoS One; 2015; 10(3):e0122224. PubMed ID: 25816143 [TBL] [Abstract][Full Text] [Related]
16. Fully automated segmentation of the cervical cord from T1-weighted MRI using PropSeg: Application to multiple sclerosis. Yiannakas MC; Mustafa AM; De Leener B; Kearney H; Tur C; Altmann DR; De Angelis F; Plantone D; Ciccarelli O; Miller DH; Cohen-Adad J; Gandini Wheeler-Kingshott CA Neuroimage Clin; 2016; 10():71-7. PubMed ID: 26793433 [TBL] [Abstract][Full Text] [Related]
17. T1- vs. T2-based MRI measures of spinal cord volume in healthy subjects and patients with multiple sclerosis. Kim G; Khalid F; Oommen VV; Tauhid S; Chu R; Horsfield MA; Healy BC; Bakshi R BMC Neurol; 2015 Jul; 15():124. PubMed ID: 26227960 [TBL] [Abstract][Full Text] [Related]
18. Demyelination and degeneration in the injured human spinal cord detected with diffusion and magnetization transfer MRI. Cohen-Adad J; El Mendili MM; Lehéricy S; Pradat PF; Blancho S; Rossignol S; Benali H Neuroimage; 2011 Apr; 55(3):1024-33. PubMed ID: 21232610 [TBL] [Abstract][Full Text] [Related]
19. Automated Cervical Spinal Cord Segmentation in Real-World MRI of Multiple Sclerosis Patients by Optimized Hybrid Residual Attention-Aware Convolutional Neural Networks. Bueno A; Bosch I; Rodríguez A; Jiménez A; Carreres J; Fernández M; Marti-Bonmati L; Alberich-Bayarri A J Digit Imaging; 2022 Oct; 35(5):1131-1142. PubMed ID: 35789447 [TBL] [Abstract][Full Text] [Related]
20. Convolutional Neural Network-Based Automated Segmentation of the Spinal Cord and Contusion Injury: Deep Learning Biomarker Correlates of Motor Impairment in Acute Spinal Cord Injury. McCoy DB; Dupont SM; Gros C; Cohen-Adad J; Huie RJ; Ferguson A; Duong-Fernandez X; Thomas LH; Singh V; Narvid J; Pascual L; Kyritsis N; Beattie MS; Bresnahan JC; Dhall S; Whetstone W; Talbott JF; AJNR Am J Neuroradiol; 2019 Apr; 40(4):737-744. PubMed ID: 30923086 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]