BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 24780887)

  • 1. Transcriptomic profiles of Aspergillus flavus CA42, a strain that produces small sclerotia, by decanal treatment and after recovery.
    Chang PK; Scharfenstein LL; Mack B; Yu J; Ehrlich KC
    Fungal Genet Biol; 2014 Jul; 68():39-47. PubMed ID: 24780887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aspergillus flavus VelB acts distinctly from VeA in conidiation and may coordinate with FluG to modulate sclerotial production.
    Chang PK; Scharfenstein LL; Li P; Ehrlich KC
    Fungal Genet Biol; 2013; 58-59():71-9. PubMed ID: 23994319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molasses supplementation promotes conidiation but suppresses aflatoxin production by small sclerotial Aspergillus flavus.
    Chang PK; Hua SS
    Lett Appl Microbiol; 2007 Feb; 44(2):131-7. PubMed ID: 17257250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic profiling of Aspergillus flavus in response to 5-azacytidine.
    Lin JQ; Zhao XX; Zhi QQ; Zhao M; He ZM
    Fungal Genet Biol; 2013 Jul; 56():78-86. PubMed ID: 23644151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New Insights of Transcriptional Regulator AflR in Aspergillus flavus Physiology.
    Wang P; Xu J; Chang PK; Liu Z; Kong Q
    Microbiol Spectr; 2022 Feb; 10(1):e0079121. PubMed ID: 35080432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of Aflatoxin Biosynthesis in Aspergillus flavus by 2-Phenylethanol Is Associated with Stimulated Growth and Decreased Degradation of Branched-Chain Amino Acids.
    Chang PK; Hua SS; Sarreal SB; Li RW
    Toxins (Basel); 2015 Sep; 7(10):3887-902. PubMed ID: 26404375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep sequencing analysis of transcriptomes in Aspergillus flavus in response to resveratrol.
    Wang H; Lei Y; Yan L; Cheng K; Dai X; Wan L; Guo W; Cheng L; Liao B
    BMC Microbiol; 2015 Sep; 15():182. PubMed ID: 26420172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of natural antisense transcript, sclerotia development and secondary metabolism by strand-specific RNA sequencing of Aspergillus flavus.
    Wu X; Zhou B; Yin C; Guo Y; Lin Y; Pan L; Wang B
    PLoS One; 2014; 9(5):e97814. PubMed ID: 24849659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aspergillus flavus aswA, a gene homolog of Aspergillus nidulans oefC, regulates sclerotial development and biosynthesis of sclerotium-associated secondary metabolites.
    Chang PK; Scharfenstein LL; Li RW; Arroyo-Manzanares N; De Saeger S; Diana Di Mavungu J
    Fungal Genet Biol; 2017 Jul; 104():29-37. PubMed ID: 28442441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrafungal distribution of aflatoxins among conidia and sclerotia of Aspergillus flavus and Aspergillus parasiticus.
    Wicklow DT; Shotwell OL
    Can J Microbiol; 1983 Jan; 29(1):1-5. PubMed ID: 6403210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sexual reproduction in Aspergillus flavus sclerotia naturally produced in corn.
    Horn BW; Sorensen RB; Lamb MC; Sobolev VS; Olarte RA; Worthington CJ; Carbone I
    Phytopathology; 2014 Jan; 104(1):75-85. PubMed ID: 23883157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA sequencing of an nsdC mutant reveals global regulation of secondary metabolic gene clusters in Aspergillus flavus.
    Gilbert MK; Mack BM; Wei Q; Bland JM; Bhatnagar D; Cary JW
    Microbiol Res; 2016 Jan; 182():150-61. PubMed ID: 26686623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional characterization of a veA-dependent polyketide synthase gene in Aspergillus flavus necessary for the synthesis of asparasone, a sclerotium-specific pigment.
    Cary JW; Harris-Coward PY; Ehrlich KC; Di Mavungu JD; Malysheva SV; De Saeger S; Dowd PF; Shantappa S; Martens SL; Calvo AM
    Fungal Genet Biol; 2014 Mar; 64():25-35. PubMed ID: 24412484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The DmtA methyltransferase contributes to Aspergillus flavus conidiation, sclerotial production, aflatoxin biosynthesis and virulence.
    Yang K; Liang L; Ran F; Liu Y; Li Z; Lan H; Gao P; Zhuang Z; Zhang F; Nie X; Kalayu Yirga S; Wang S
    Sci Rep; 2016 Mar; 6():23259. PubMed ID: 26979781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The PHD Transcription Factor Rum1 Regulates Morphogenesis and Aflatoxin Biosynthesis in
    Hu Y; Yang G; Zhang D; Liu Y; Li Y; Lin G; Guo Z; Wang S; Zhuang Z
    Toxins (Basel); 2018 Jul; 10(7):. PubMed ID: 30036940
    [No Abstract]   [Full Text] [Related]  

  • 16. Elucidation of veA-dependent genes associated with aflatoxin and sclerotial production in Aspergillus flavus by functional genomics.
    Cary JW; OBrian GR; Nielsen DM; Nierman W; Harris-Coward P; Yu J; Bhatnagar D; Cleveland TE; Payne GA; Calvo AM
    Appl Microbiol Biotechnol; 2007 Oct; 76(5):1107-18. PubMed ID: 17646985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Aspergillus flavus fluP-associated metabolite promotes sclerotial production.
    Chang PK; Scharfenstein LL; Ehrlich KC; Diana Di Mavungu J
    Fungal Biol; 2016 Oct; 120(10):1258-68. PubMed ID: 27647242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of cyclopiazonic acid, aflatrem, and aflatoxin by Aspergillus flavus is regulated by veA, a gene necessary for sclerotial formation.
    Duran RM; Cary JW; Calvo AM
    Appl Microbiol Biotechnol; 2007 Jan; 73(5):1158-68. PubMed ID: 16988822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volatile trans-2-hexenal, a soybean aldehyde, inhibits Aspergillus flavus growth and aflatoxin production in corn.
    De Lucca AJ; Carter-Wientjes CH; Boué S; Bhatnagar D
    J Food Sci; 2011 Aug; 76(6):M381-6. PubMed ID: 22417509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome Analysis of Aspergillus flavus Reveals veA-Dependent Regulation of Secondary Metabolite Gene Clusters, Including the Novel Aflavarin Cluster.
    Cary JW; Han Z; Yin Y; Lohmar JM; Shantappa S; Harris-Coward PY; Mack B; Ehrlich KC; Wei Q; Arroyo-Manzanares N; Uka V; Vanhaecke L; Bhatnagar D; Yu J; Nierman WC; Johns MA; Sorensen D; Shen H; De Saeger S; Diana Di Mavungu J; Calvo AM
    Eukaryot Cell; 2015 Oct; 14(10):983-97. PubMed ID: 26209694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.