BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 24781894)

  • 1. Utility of actiwatch sleep monitor to assess waking movement behavior in older women.
    Lambiase MJ; Gabriel KP; Chang YF; Kuller LH; Matthews KA
    Med Sci Sports Exerc; 2014 Dec; 46(12):2301-7. PubMed ID: 24781894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Method for Activity Sleep Harmonization (MASH): a novel method for harmonizing data from two wearable devices to estimate 24-h sleep-wake cycles.
    Dooley EE; Winkles JF; Colvin A; Kline CE; Badon SE; Diaz KM; Karvonen-Gutierrez CA; Kravitz HM; Sternfeld B; Thomas SJ; Hall MH; Gabriel KP
    J Act Sedentary Sleep Behav; 2023; 2():. PubMed ID: 37694170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of sleep parameters from wrist-worn ActiGraph and Actiwatch devices.
    Liu F; Schrack J; Wanigatunga SK; Rabinowitz JA; He L; Wanigatunga AA; Zipunnikov V; Simonsick EM; Ferrucci L; Spira AP
    Sleep; 2024 Feb; 47(2):. PubMed ID: 37257489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calibration of wrist-worn ActiWatch 2 and ActiGraph wGT3X for assessment of physical activity in young adults.
    Lee P; Tse CY
    Gait Posture; 2019 Feb; 68():141-149. PubMed ID: 30476691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal relationships between physical activity and sleep in older women.
    Lambiase MJ; Gabriel KP; Kuller LH; Matthews KA
    Med Sci Sports Exerc; 2013 Dec; 45(12):2362-8. PubMed ID: 23739529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validity of activity-based devices to estimate sleep.
    Weiss AR; Johnson NL; Berger NA; Redline S
    J Clin Sleep Med; 2010 Aug; 6(4):336-42. PubMed ID: 20726281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The convergent validity of Actiwatch 2 and ActiGraph Link accelerometers in measuring total sleeping period, wake after sleep onset, and sleep efficiency in free-living condition.
    Lee PH; Suen LK
    Sleep Breath; 2017 Mar; 21(1):209-215. PubMed ID: 27614441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PSG Validation of minute-to-minute scoring for sleep and wake periods in a consumer wearable device.
    Cheung J; Leary EB; Lu H; Zeitzer JM; Mignot E
    PLoS One; 2020; 15(9):e0238464. PubMed ID: 32941498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validity and comparability of a wrist-worn accelerometer in children.
    Ekblom O; Nyberg G; Bak EE; Ekelund U; Marcus C
    J Phys Act Health; 2012 Mar; 9(3):389-93. PubMed ID: 22454440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Children's physical activity assessed with wrist- and hip-worn accelerometers.
    Rowlands AV; Rennie K; Kozarski R; Stanley RM; Eston RG; Parfitt GC; Olds TS
    Med Sci Sports Exerc; 2014 Dec; 46(12):2308-16. PubMed ID: 24781890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Objective changes in activity levels following sleep extension as measured by wrist actigraphy.
    Devine JK; Burke TM; Skeiky L; Choynowski JJ; Quartana PJ; Balkin TJ; Capaldi VF; Brager AJ; Simonelli G
    Sleep Med; 2019 Aug; 60():173-177. PubMed ID: 31213393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparability of children's sedentary time estimates derived from wrist worn GENEActiv and hip worn ActiGraph accelerometer thresholds.
    Boddy LM; Noonan RJ; Kim Y; Rowlands AV; Welk GJ; Knowles ZR; Fairclough SJ
    J Sci Med Sport; 2018 Oct; 21(10):1045-1049. PubMed ID: 29650338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of photoplethysmography- and acceleration-based sleep staging in a community sample: comparison with polysomnography and Actiwatch.
    Liu PK; Ting N; Chiu HC; Lin YC; Liu YT; Ku BW; Lee PL
    J Clin Sleep Med; 2023 Oct; 19(10):1797-1810. PubMed ID: 37338335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ActiGraph GT3X+ and Actical Wrist and Hip Worn Accelerometers for Sleep and Wake Indices in Young Children Using an Automated Algorithm: Validation With Polysomnography.
    Smith C; Galland B; Taylor R; Meredith-Jones K
    Front Psychiatry; 2019; 10():958. PubMed ID: 31992999
    [No Abstract]   [Full Text] [Related]  

  • 15. Validity and Comparability of a Wrist-Worn Accelerometer in Children.
    Ekblom O; Nyberg G; Ekblom Bak E; Ekelund U; Marcus C
    J Phys Act Health; 2011 May; ():. PubMed ID: 21934159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating sleep efficiency in 10- to- 13-year-olds using a waist-worn accelerometer.
    Borghese MM; Lin Y; Chaput JP; Janssen I
    Sleep Health; 2018 Feb; 4(1):110-115. PubMed ID: 29332671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of a physical activity accelerometer device worn on the hip and wrist against polysomnography.
    Full KM; Kerr J; Grandner MA; Malhotra A; Moran K; Godoble S; Natarajan L; Soler X
    Sleep Health; 2018 Apr; 4(2):209-216. PubMed ID: 29555136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is Wrist Accelerometry Suitable for Threshold Scoring? A Comparison of Hip-Worn and Wrist-Worn ActiGraph Data in Low-Active Older Adults With Obesity.
    Fanning J; Miller ME; Chen SH; Davids C; Kershner K; Rejeski WJ
    J Gerontol A Biol Sci Med Sci; 2022 Dec; 77(12):2429-2434. PubMed ID: 34791237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do wearable fitness devices correlate with performance-based tests of work-related functional capacity?
    Karpman J; Gross DP; Manns P; Tomkins-Lane C
    Work; 2020; 66(1):201-211. PubMed ID: 32417827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Sedentary Estimates between activPAL and Hip- and Wrist-Worn ActiGraph.
    Koster A; Shiroma EJ; Caserotti P; Matthews CE; Chen KY; Glynn NW; Harris TB
    Med Sci Sports Exerc; 2016 Aug; 48(8):1514-1522. PubMed ID: 27031744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.