BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 24781900)

  • 21. Comparative Transcriptome Analysis of
    Yan J; Yang Z; Xie J
    Front Cell Infect Microbiol; 2022; 12():851521. PubMed ID: 35811677
    [No Abstract]   [Full Text] [Related]  

  • 22. Identification of the syntrophic partners in a coculture coupling anaerobic methanol oxidation to Fe(III) reduction.
    Daniel R; Warnecke F; Potekhina JS; Gottschalk G
    FEMS Microbiol Lett; 1999 Nov; 180(2):197-203. PubMed ID: 10556712
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering and characterization of copper and gold sensors in Escherichia coli and Synechococcus sp. PCC 7002.
    Lacey RF; Ye D; Ruffing AM
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2797-2808. PubMed ID: 30645690
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cross-feeding between cyanobacterium Synechococcus and Escherichia coli in an artificial autotrophic-heterotrophic coculture system revealed by integrated omics analysis.
    Ma J; Guo T; Ren M; Chen L; Song X; Zhang W
    Biotechnol Biofuels Bioprod; 2022 Jun; 15(1):69. PubMed ID: 35733176
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic and transcriptomic phenotyping of inorganic carbon acclimation in the Cyanobacterium Synechococcus elongatus PCC 7942.
    Schwarz D; Nodop A; Hüge J; Purfürst S; Forchhammer K; Michel KP; Bauwe H; Kopka J; Hagemann M
    Plant Physiol; 2011 Apr; 155(4):1640-55. PubMed ID: 21282404
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integrated transcriptomic and proteomic analysis of the global response of Synechococcus to high light stress.
    Xiong Q; Feng J; Li ST; Zhang GY; Qiao ZX; Chen Z; Wu Y; Lin Y; Li T; Ge F; Zhao JD
    Mol Cell Proteomics; 2015 Apr; 14(4):1038-53. PubMed ID: 25681118
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptome landscape of Synechococcus elongatus PCC 7942 for nitrogen starvation responses using RNA-seq.
    Choi SY; Park B; Choi IG; Sim SJ; Lee SM; Um Y; Woo HM
    Sci Rep; 2016 Aug; 6():30584. PubMed ID: 27488818
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Roles of UndA and MtrC of Shewanella putrefaciens W3-18-1 in iron reduction.
    Yang Y; Chen J; Qiu D; Zhou J
    BMC Microbiol; 2013 Nov; 13():267. PubMed ID: 24274142
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nutrient recycling facilitates long-term stability of marine microbial phototroph-heterotroph interactions.
    Christie-Oleza JA; Sousoni D; Lloyd M; Armengaud J; Scanlan DJ
    Nat Microbiol; 2017 Jun; 2():17100. PubMed ID: 28650444
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A transcriptome analysis of the antibacterial mechanism of flavonoids from Sedum aizoon L. against Shewanella putrefaciens.
    Wang J; Chi Z; Zhao K; Wang H; Zhang X; Xu F; Shao X; Wei Y
    World J Microbiol Biotechnol; 2020 Jun; 36(7):94. PubMed ID: 32562062
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional distinctness in the exoproteomes of marine Synechococcus.
    Christie-Oleza JA; Armengaud J; Guerin P; Scanlan DJ
    Environ Microbiol; 2015 Oct; 17(10):3781-94. PubMed ID: 25727668
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Light history influences the response of the marine cyanobacterium Synechococcus sp. WH7803 to oxidative stress.
    Blot N; Mella-Flores D; Six C; Le Corguillé G; Boutte C; Peyrat A; Monnier A; Ratin M; Gourvil P; Campbell DA; Garczarek L
    Plant Physiol; 2011 Aug; 156(4):1934-54. PubMed ID: 21670225
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome Features and Biochemical Characteristics of a Robust, Fast Growing and Naturally Transformable Cyanobacterium Synechococcus elongatus PCC 11801 Isolated from India.
    Jaiswal D; Sengupta A; Sohoni S; Sengupta S; Phadnavis AG; Pakrasi HB; Wangikar PP
    Sci Rep; 2018 Nov; 8(1):16632. PubMed ID: 30413737
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alkane production by the marine cyanobacterium Synechococcus sp. NKBG15041c possessing the α-olefin biosynthesis pathway.
    Yoshino T; Liang Y; Arai D; Maeda Y; Honda T; Muto M; Kakunaka N; Tanaka T
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1521-9. PubMed ID: 25527377
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Growth of the cyanobacterium Synechococcus leopoliensis CCAP1405/1 on agar media in the presence of heterotrophic bacteria.
    Hayashi S; Itoh K; Suyama K
    Microbes Environ; 2011; 26(2):120-7. PubMed ID: 21502741
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction.
    Hays SG; Yan LLW; Silver PA; Ducat DC
    J Biol Eng; 2017; 11():4. PubMed ID: 28127397
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Carbon and energetic metabolism of Synechococcus sp. PCC7942 under photoautotrophic conditions].
    Yan R; Zhang Z; Zhu D; Chu J
    Sheng Wu Gong Cheng Xue Bao; 2009 Sep; 25(9):1352-9. PubMed ID: 19938478
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mimicking lichens: incorporation of yeast strains together with sucrose-secreting cyanobacteria improves survival, growth, ROS removal, and lipid production in a stable mutualistic co-culture production platform.
    Li T; Li CT; Butler K; Hays SG; Guarnieri MT; Oyler GA; Betenbaugh MJ
    Biotechnol Biofuels; 2017; 10():55. PubMed ID: 28344645
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Carbon metabolism and energetic utilization of Synechococcus sp. PCC7942 under mixotrophic condition].
    Yan R; Zhang Z; Zeng Q; Du Z; Chu J
    Sheng Wu Gong Cheng Xue Bao; 2010 Sep; 26(9):1239-48. PubMed ID: 21141114
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Torn apart and reunited: impact of a heterotroph on the transcriptome of Prochlorococcus.
    Biller SJ; Coe A; Chisholm SW
    ISME J; 2016 Dec; 10(12):2831-2843. PubMed ID: 27258949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.